Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Apr 1;73(7):2345-56.
doi: 10.1158/0008-5472.CAN-12-3180. Epub 2013 Jan 24.

Pirfenidone inhibits pancreatic cancer desmoplasia by regulating stellate cells

Affiliations

Pirfenidone inhibits pancreatic cancer desmoplasia by regulating stellate cells

Shingo Kozono et al. Cancer Res. .

Abstract

Pancreatic stellate cells (PSC), which are implicated in desmoplasia in pancreatic cancer, enhance the malignancy of cancer cells and confer resistance to established treatments. We investigated whether the antifibrotic agent pirfenidone can suppress desmoplasia and exert antitumor effects against pancreatic cancer. Primary PSCs were established from pancreatic cancer tissue obtained during surgery. In vitro, pirfenidone inhibited the proliferation, invasiveness, and migration of PSCs in a dose-dependent manner. Although supernatants of untreated PSCs increased the proliferation, invasiveness, and migration of pancreatic cancer cells (PCC), supernatants of pirfenidone-treated PSCs decreased these effects. Exposure to PCC supernatant increased the production of platelet-derived growth factor-A, hepatic growth factor, collagen type I, fibronectin, and periostin in PSCs, which was significantly reduced by pirfenidone. Mice were subcutaneously implanted with PCCs (SUIT-2 cells) and PSCs into the right flank and PCCs alone into the left flank. Oral administration of pirfenidone to these mice significantly reduced tumor growth of co-implanted PCCs and PSCs, but not of PCCs alone. Pirfenidone also decreased the proliferation of PSCs and the deposition of collagen type I and periostin in tumors. In mice with orthotopic tumors consisting of PCCs co-implanted with PSCs, pirfenidone suppressed tumor growth, reduced the number of peritoneal disseminated nodules, and reduced the incidence of liver metastasis. Pirfenidone in combination with gemcitabine more effectively suppressed orthotopic tumor growth compared with pirfenidone or gemcitabine alone. In conclusion, our findings indicate that pirfenidone is a promising antitumor agent for pancreatic cancer, owing to its suppression of desmoplasia through regulating PSCs.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms