Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013;8(1):e54250.
doi: 10.1371/journal.pone.0054250. Epub 2013 Jan 17.

Serotonin receptor 2C and insulin secretion

Affiliations

Serotonin receptor 2C and insulin secretion

Qiang Zhang et al. PLoS One. 2013.

Abstract

Type 2 diabetes mellitus (T2DM) describes a group of metabolic disorders characterized by defects in insulin secretion and insulin sensitivity. Insulin secretion from pancreatic β-cells is an important factor in the etiology of T2DM, though the complex regulation and mechanisms of insulin secretion from β-cells remains to be fully elucidated. High plasma levels of serotonin (5-hydroxytryptamine; 5-HT) have been reported in T2DM patients, though the potential effect on insulin secretion is unclear. However, it is known that the 5-HT receptor 2C (5-HT(2C)R) agonist, mCPP, decreases plasma insulin concentration in mice. As such, we aimed to investigate the expression of the 5-HT(2C)R in pancreatic islets of diabetic mice and the role of 5-HT(2C)R signaling in insulin secretion from pancreatic β-cells. We found that 5-HT(2C)R expression was significantly increased in pancreatic islets of db/db mice. Furthermore, treatment with a 5-HT(2C)R antagonist (SB242084) increased insulin secretion from pancreatic islets isolated from db/db mice in a dose-dependent manner, but had no effect in islets from control mice. The effect of a 5-HT(2C)R agonist (mCPP) and antagonist (SB242084) were further studied in isolated pancreatic islets from mice and Min-6 cells. We found that mCPP significantly inhibited insulin secretion in Min-6 cells and isolated islets in a dose-dependent manner, which could be reversed by SB242084 or RNA interference against 5-HT(2C)R. We also treated Min-6 cells with palmitic acid for 24 h, and found that the expression of 5-HT(2C)R increased in a dose-dependent manner; furthermore, the inhibition of insulin secretion in Min-6 cells induced by palmitic acid could be reversed by SB242084 or RNA interference against 5-HT(2C)R. Taken together, our data suggests that increased expression of 5-HT(2C)R in pancreatic β-cells might inhibit insulin secretion. This unique observation increases our understanding of T2DM and suggests new avenues for potential treatment.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1
Figure 1. Expression of 5-HT2CR in pancreatic islets of db/db mice.
A: mRNA level of 5-HT2CR was significantly higher in pancreatic islets of db/db mice compared to control mice. B: Protein level of 5-HT2CR was significantly higher in pancreatic islets of db/db mice compared to control mice. C: Relative protein level of 5-HT2CR. Graphs are shown as a ratio of 5-HT2CR to β-actin and compared to controls. All bands were normalized as percentages of the control values. Shown are representative results (average of duplicates) of at least three independent experiments. (** P<0.01).
Figure 2
Figure 2. Effect of SB242084 on insulin secretion from pancreatic islets of control and db/db mice.
After treatment with 1 to 10 µmol/l of SB242084 for 12 h, insulin secretion increased in pancreatic islets of db/db mice (A), but not in pancreatic islets of control mice (B; islets per well = 8; wells per group = 6; ** P<0.01).
Figure 3
Figure 3. Effect of mCPP on insulin secretion from pancreatic β-cells.
A: After treatment with 1 to 100 µmol/l mCPP for 12 h, insulin secretion from Min-6 cells under stimulus of 16.7 mM glucose decreased in a mCPP dose-dependent manner (n = 6; * P<0.05; ** P<0.01). B: After treatment with 1 to 100 µmol/l mCPP for 12 h, insulin secretion from isolated mouse pancreatic islets under stimulus of 16.7 mM glucose decreased in a mCPP dose-dependent manner (islets per well = 8; wells per group = 6; * P<0.05; ** P<0.01).
Figure 4
Figure 4. Effect of SB242084 on mCPP-induced inhibition of insulin secretion from pancreatic β-cells.
A: For Min-6 cells, after treatment with 5 to 25 µmol/l mCPP with or without 5 µmol/l SB242084 for 12 h, the groups with SB242085 added showed higher insulin secretion under stimulus of 16.7 mM glucose, compared to control (n = 6; * P<0.05; ** P<0.01). B: For isolated mouse pancreatic islets, after treatment with 5 to 25 µmol/l mCPP with or without 5 µmol/l SB242084 for 12 h, the groups with SB242085 added showed higher insulin secretion under stimulus of 16.7 mM glucose, compared to control (islets per well = 8; wells per group = 6; * P<0.05; ** P<0.01).
Figure 5
Figure 5. Screening of siRNA efficacy.
Min-6 cells were transfected with si5-HT2CR-1, si5-HT2CR-2, si5-HT2CR-3 and control siRNA separately. After 48 h in culture expression of 5-HT2CR in each group was analyzed at the mRNA (A) and protein level (B). C: Relative protein level of 5-HT2CR. Graphs are shown as a ratio of 5-HT2CR to β-actin and compared to controls. All bands were normalized as percentages of the control values. Shown are representative results (average of duplicates) of at least three independent experiments. (* P<0.05; ** P<0.01).
Figure 6
Figure 6. Effect of RNA interference of 5-HT2CR on mCPP-induced inhibition of insulin secretion from Min-6 cells.
Min-6 cells were transfected with si5-HT2CR-3 or control siRNA. After 36 h in culture cells were treated with 5, 15 or 25 µmol/l mCPP for another 12 h. The si5-HT2CR-3-treated groups showed higher insulin secretion under stimulus of 16.7 mM glucose compared to control (n = 6; * P<0.05; ** P<0.01).
Figure 7
Figure 7. Effect of palmitic acid on expression of 5-HT2CR in Min-6 cells.
Min-6 cells were treated with 0.1, 0.2 or 0.3 mM of palmitic acid for 24 h, and then the expression of 5-HT2CR was analyzed at the mRNA (A) and protein level (B). C: Relative protein level of 5-HT2CR. Graphs are shown as a ratio of 5-HT2CR to β-actin and compared to controls. All bands were normalized as percentages of the control values. Shown are representative results (average of duplicates) of at least three independent experiments. (* P<0.05; ** P<0.01).
Figure 8
Figure 8. A: Effect of SB242084 on palmitic acid’s inhibition of insulin secretion from Min-6 cells.
Min-6 cells were treated with 0.1 to 0.3 mM palmitic acid for 12 h, and were then treated with vehicle or 5 µmol/l SB242084 for a further 12 h. The groups with SB242084 added showed higher insulin secretion under stimulus of 16.7 mM glucose, compared to control (n = 6; ** P<0.01). B: Effect of RNA interference of 5-HT2CR on palmitic acid mediated inhibition of insulin secretion from Min-6 cells. Min-6 cells were transfected with si5-HT2CR-3 or control siRNA and cultured for 24 h, next 0.1 to 0.3 mM palmitic acid was added for a further 24 h. The si5-HT2CR-3-treated groups showed higher insulin secretion under stimulus of 16.7 mM glucose compared to control (n = 6; ** P<0.01).
Figure 9
Figure 9. A: Protein level of TPH in pancreatic islets of db/db mice compared to control mice.
B: Effect of palmitic acid on protein level of TPH in Min-6 cells. Min-6 cells were treated with 0.1, 0.2 or 0.3 mM of palmitic acid for 24 h, and then the expression of TPH were analyzed. C: Relative protein level of TPH1 in (A). D: Relative protein level of TPH2 in (A). E: Relative protein level of TPH1 in (B). F: Relative protein level of TPH2 in (B). G: mRNA level of TPH1 was significantly higher in pancreatic islets of db/db mice compared to control mice. H: mRNA level of TPH2 was significantly higher in pancreatic islets of db/db mice compared to control mice. I: Effect of palmitic acid on mRNA level of TPH1 in Min-6 cells. J: Effect of palmitic acid on mRNA level of TPH2 in Min-6 cells. (* P<0.05, ** P<0.01).

Similar articles

Cited by

References

    1. Hattersley AT (2004) Unlocking the secrets of the pancreatic beta cell: man and mouse provide the key. J Clin Invest 114: 314–6. - PMC - PubMed
    1. Marchetti P, Lupi R, Boggi U, Filipponi F, Marchetti P (2010) The beta-cell in human type 2 diabetes. Adv Exp Med Biol 654: 501–14. - PubMed
    1. Holness MJ, Hegazy S, Sugden MC (2011) Signalling satiety and starvation to β-Cell insulin secretion. Curr Diabetes Rev 7: 336–45. - PubMed
    1. Rodriguez-Diaz R, Abdulreda MH, Formoso AL, Gans I, Ricordi C, et al. (2011) Innervation patterns of autonomic axons in the human endocrine pancreas. Cell Metab. 14: 45–54. - PMC - PubMed
    1. Ahren B (2000) Autonomic regulation of islet hormone secretion–implications for health and disease. Diabetologia 43: 393–410. - PubMed

Publication types

MeSH terms