Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013;8(1):e54481.
doi: 10.1371/journal.pone.0054481. Epub 2013 Jan 22.

A potential role for plasma uric acid in the endothelial pathology of Plasmodium falciparum malaria

Affiliations

A potential role for plasma uric acid in the endothelial pathology of Plasmodium falciparum malaria

Neida K Mita-Mendoza et al. PLoS One. 2013.

Abstract

Background: Inflammatory cytokinemia and systemic activation of the microvascular endothelium are central to the pathogenesis of Plasmodium falciparum malaria. Recently, 'parasite-derived' uric acid (UA) was shown to activate human immune cells in vitro, and plasma UA levels were associated with inflammatory cytokine levels and disease severity in Malian children with malaria. Since UA is associated with endothelial inflammation in non-malaria diseases, we hypothesized that elevated UA levels contribute to the endothelial pathology of P. falciparum malaria.

Methodology/principal findings: We measured levels of UA and soluble forms of intercellular adhesion molecule-1 (sICAM-1), vascular cell adhesion molecule-1 (sVCAM-1), E-selectin (sE-Selectin), thrombomodulin (sTM), tissue factor (sTF) and vascular endothelial growth factor (VEGF) in the plasma of Malian children aged 0.5-17 years with uncomplicated malaria (UM, n = 487) and non-cerebral severe malaria (NCSM, n = 68). In 69 of these children, we measured these same factors once when they experienced a malaria episode and twice when they were healthy (i.e., before and after the malaria transmission season). We found that levels of UA, sICAM-1, sVCAM-1, sE-Selectin and sTM increase during a malaria episode and return to basal levels at the end of the transmission season (p<0.0001). Plasma levels of UA and these four endothelial biomarkers correlate with parasite density and disease severity. In children with UM, UA levels correlate with parasite density (r = 0.092, p = 0.043), sICAM-1 (r = 0.255, p<0.0001) and sTM (r = 0.175, p = 0.0001) levels. After adjusting for parasite density, UA levels predict sTM levels.

Conclusions/significance: Elevated UA levels may contribute to malaria pathogenesis by damaging endothelium and promoting a procoagulant state. The correlation between UA levels and parasite densities suggests that parasitized erythrocytes are one possible source of excess UA. UA-induced shedding of endothelial TM may represent a novel mechanism of malaria pathogenesis, in which activated thrombin induces fibrin deposition and platelet aggregation in microvessels. This protocol is registered at clinicaltrials.gov (NCT00669084).

PubMed Disclaimer

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1
Figure 1. Plasma UA levels increase during an acute episode of P. falciparum malaria and further increase with disease severity.
A. UA levels were quantified in paired plasma samples from 69 Malian children before and after the 2009 malaria transmission season, and at their first episode of malaria in the interim. B. UA levels were quantified in plasma samples from Malian children with uncomplicated (UM, n = 487) or non-cerebral severe malaria (NCSM, n = 68). Boxplots show the median, interquartile range, with outliers shown as open circles beyond the range. Data points are displayed by density –.
Figure 2
Figure 2. Correlations between plasma levels of UA and those of sICAM-1 or sTM during an acute episode of P. falciparum malaria.
The levels of UA, sICAM-1 and sTM were quantified in plasma samples from 487 Malian children at their first episode of uncomplicated P. falciparum malaria and their relationships analyzed. A. The graph shows a positive linear correlation between UA and sICAM-1 levels, but not at the lowest and highest UA levels measured. B. The graph shows a positive linear correlation between UA and sTM levels, but not at the lowest and highest UA levels measured. The blue line in each graph is the loess smooth using the default values , showing a moving average line with 95% pointwise confidence intervals.

References

    1. Kim H, Higgins S, Liles WC, Kain KC (2011) Endothelial activation and dysregulation in malaria: a potential target for novel therapeutics. Curr Opin Hematol 18: 177–185. - PubMed
    1. Turner GD, Ly VC, Nguyen TH, Tran TH, Nguyen HP, et al. (1998) Systemic endothelial activation occurs in both mild and severe malaria. Correlating dermal microvascular endothelial cell phenotype and soluble cell adhesion molecules with disease severity. Am J Pathol 152: 1477–1487. - PMC - PubMed
    1. Conroy AL, Phiri H, Hawkes M, Glover S, Mallewa M, et al. (2010) Endothelium-based biomarkers are associated with cerebral malaria in Malawian children: a retrospective case-control study. PLoS One 5: e15291. - PMC - PubMed
    1. Furuta T, Kimura M, Watanabe N (2010) Elevated levels of vascular endothelial growth factor (VEGF) and soluble vascular endothelial growth factor receptor (VEGFR)-2 in human malaria. Am J Trop Med Hyg 82: 136–139. - PMC - PubMed
    1. Jain V, Armah HB, Tongren JE, Ned RM, Wilson NO, et al. (2008) Plasma IP-10, apoptotic and angiogenic factors associated with fatal cerebral malaria in India. Malar J 7: 83. - PMC - PubMed

Publication types

MeSH terms

Associated data