Differential effects of serum heat treatment on chemotaxis and phagocytosis by human neutrophils
- PMID: 23349959
- PMCID: PMC3551912
- DOI: 10.1371/journal.pone.0054735
Differential effects of serum heat treatment on chemotaxis and phagocytosis by human neutrophils
Abstract
Neutrophils, in cooperation with serum, are vital gatekeepers of a host's microbiome and frontline defenders against invading microbes. Yet because human neutrophils are not amenable to many biological techniques, the mechanisms governing their immunological functions remain poorly understood. We here combine state-of-the-art single-cell experiments with flow cytometry to examine how temperature-dependent heat treatment of serum affects human neutrophil interactions with "target" particles of the fungal model zymosan. Assessing separately both the chemotactic as well as the phagocytic neutrophil responses to zymosan, we find that serum heat treatment modulates these responses in a differential manner. Whereas serum treatment at 52°C impairs almost all chemotactic activity and reduces cell-target adhesion, neutrophils still readily engulf target particles that are maneuvered into contact with the cell surface under the same conditions. Higher serum-treatment temperatures gradually suppress phagocytosis even after enforced cell-target contact. Using fluorescent staining, we correlate the observed cell behavior with the amounts of C3b and IgG deposited on the zymosan surface in sera treated at the respective temperatures. This comparison not only affirms the critical role of complement in chemotactic and adhesive neutrophil interactions with fungal surfaces, but also unmasks an important participation of IgGs in the phagocytosis of yeast-like fungal particles. In summary, this study presents new insight into fundamental immune mechanisms, including the chemotactic recruitment of immune cells, the adhesive capacity of cell-surface receptors, the role of IgGs in fungal recognition, and the opsonin-dependent phagocytosis morphology of human neutrophils. Moreover, we show how, by fine-tuning the heat treatment of serum, one can selectively study chemotaxis or phagocytosis under otherwise identical conditions. These results not only refine our understanding of a widely used laboratory method, they also establish a basis for new applications of this method.
Conflict of interest statement
Figures







References
-
- Rudnicki MA, McBurney MW (1987) Cell culture methods and induction of differentiation of embryonal carcinoma cell lines. In: Robertson EJ, editor. Teratocarcinomas and Embryonic Stem Cells - A Practical Approach. Oxford: IRL Press Ltd. 19–49.
-
- Weiss SA, Whitford WG, Gorfien SF, Godwin GP (1995) Insect cell-culture techniques in serum-containing medium. Methods Mol Biol 39: 65–78. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources