Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1990 Jun;188(2):175-84.
doi: 10.1016/0014-4827(90)90157-6.

A role for the Ca2(+)-dependent adhesion molecule, N-cadherin, in myoblast interaction during myogenesis

Affiliations

A role for the Ca2(+)-dependent adhesion molecule, N-cadherin, in myoblast interaction during myogenesis

K A Knudsen et al. Exp Cell Res. 1990 Jun.

Abstract

The formation of multinucleate skeletal muscle cells (myotubes) is a Ca2(+)-dependent process involving the interaction and fusion of mononucleate muscle cells (myoblasts). Specific cell-cell adhesion precedes lipid bilayer union during myoblast fusion and has been shown to involve both Ca2(+)-independent (CI)2 and Ca2(+)-dependent (CD) mechanisms. In this paper we present evidence that CD myoblast adhesion involves a molecule similar or identical to two known CD adhesion glycoproteins, N-cadherin and A-CAM. These molecules were previously identified by other laboratories in brain and cardiac muscle, respectively, and are postulated to be the same molecule. Antibodies to N-cadherin and A-CAM immunoblotted a similar band with a molecular weight of approximately 125,000 in extracts of brain, heart, and pectoral muscle isolated from chick embryos and in extracts of muscle cells grown in vitro at Ca2+ concentrations that either promoted or inhibited myotube formation. In assays designed to measure the interaction of fusion-competent myoblasts in suspension, both polyclonal and monoclonal anti-N-cadherin antibodies inhibited CD myoblast aggregation, suggesting that N-cadherin mediates the CD aspect of myoblast adhesion. Anti-N-cadherin also had a partial inhibitory effect on myotube formation likely due to the effect on myoblast-myoblast adhesion. The results indicate that N-cadherin/A-CAM plays a role in myoblast recognition and adhesion during skeletal myogenesis.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources