Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Mar 1;162(1):37-42.
doi: 10.1016/j.ijfoodmicro.2012.12.016. Epub 2013 Jan 2.

Pressure inactivation of Tulane virus, a candidate surrogate for human norovirus and its potential application in food industry

Affiliations

Pressure inactivation of Tulane virus, a candidate surrogate for human norovirus and its potential application in food industry

Xinhui Li et al. Int J Food Microbiol. .

Abstract

Human norovirus (HuNoV) is the leading causative agent for foodborne disease. Currently, studies of HuNoV usually rely on surrogates such as murine norovirus (MNV) due to the lack of a suitable cell culture system and a small animal model for HuNoV. Tulane virus (TV), a monkey calicivirus, is a cultivable enteric calicivirus that not only recognizes the same receptors as HuNoV, but is also genetically closely related to HuNoV. In this study, we determined the pH stability of TV and MNV-1, as well as the effect of high hydrostatic pressure (HHP) on inactivating both viruses in aqueous media, blueberries and oysters. We demonstrated that both TV and MNV-1 were very stable under an acidic environment. They were more resistant to pressure at an acidic environment than at neutral pH. Pressure treatment of 600 MPa for 2 min at different temperatures (4, 21 and 35 °C) barely caused any reduction of TV, as well as MNV-1, on un-wetted (dry) blueberries. However, both TV and MNV-1 on blueberries were successfully inactivated by a pressure of ≤400 MPa when blueberries were immersed in phosphate-buffered saline during HHP. Pressure inactivation of both TV and MNV-1 in blueberries and oysters increased as sample temperature decreased in the order of 4>21>35 °C. TV was more sensitive to pressure than MNV-1 for the three matrices tested, culture media, blueberries and oysters. This study provides important information on the use of TV as a surrogate for HuNoV study. Results obtained from this study lay a foundation for designing effective HHP treatments for inactivation of HuNoV in high-risk foods such as berries and oysters.

PubMed Disclaimer

Publication types

LinkOut - more resources