Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Feb 20;135(7):2411-4.
doi: 10.1021/ja310432u. Epub 2013 Feb 7.

An exceptionally simple strategy for DNA-functionalized up-conversion nanoparticles as biocompatible agents for nanoassembly, DNA delivery, and imaging

Affiliations

An exceptionally simple strategy for DNA-functionalized up-conversion nanoparticles as biocompatible agents for nanoassembly, DNA delivery, and imaging

Le-Le Li et al. J Am Chem Soc. .

Abstract

Lanthanide-doped up-conversion nanoparticles (UCNPs) have shown promise in biomedical applications. However, as the UCNPs are normally capped with hydrophobic ligands, it remains challenging to prepare biocompatible UCNPs with specific molecular recognition capabilities. We herein report an exceptionally simple strategy to prepare uniform DNA-modified UCNPs as versatile bioprobes. The approach can directly convert as-prepared hydrophobic UCNPs into water-soluble DNA-UCNPs without any chemical modification of UCNPs or oligonucleotides. Furthermore, DNA molecules on the DNA-UCNPs retain their biorecognition ability, allowing programmable assembly of hybrid nanostructures. More importantly, we show that these DNA-UCNPs are capable of crossing cell membranes without the need of transfection agents, and their use as agents for bioimaging and DNA delivery are also demonstrated. Finally, DNA aptamer-conjugated UCNPs can be readily used for targeted imaging of cancer cells.

PubMed Disclaimer

Figures

Figure 1
Figure 1
TEM images of the (a,b) as-prepared and (c,d) DNA–modified UCNPs (DNA layer was marked for DNA-UCNPs in HRTEM).
Figure 2
Figure 2
(a) Photographs of the transparent solution of DNA–UCNPs in water without laser illumination (left) and under 980 nm laser illumination (right). (b) Room-temperature upconversion luminescence spectra of as-prepared UCNPs in cyclohexane and DNA–UCNPs in water under excitation at 980 nm.
Figure 3
Figure 3
(a) Schematic illustration of DNA-directed assembly of UCNPs and AuNPs. TEM images of T30-UCNPs assembled with AuNPs bearing (b) cDNA and (c) noncomplementary DNA.
Figure 4
Figure 4
(a) Confocal microscopy images of HeLa cells treated with (a) T30-UCNPs and (b) T30-UCNPs functionalized with Cy3 dye-labeled double stranded DNA. For UCNP images, λex = 980 nm, and emission was collected in the range λ = 510–560 nm. For Cy3 images, λex = 560 nm, and emission was collected in the range λ = 575–625 nm. Scale bars are 50 µm.
Figure 5
Figure 5
(a) Schematic illustration of the targeted imaging of cancer cells with Aptamer-UCNP bioconjugates. Confocal microscopy images of MCF-7 cells treated with (b) Apta-UCNPs and (c) Rdm-UCNPs. λex = 980 nm, emission was collected in the range λ = 510–560 nm. Scale bars are 20 µm.
Scheme 1
Scheme 1
Direct Synthesis of DNA-Functionalized UCNPs from As-prepared Hydrophobic Ones through a Facile One-Step Ligand Exchange Strategy.

References

    1. Wang F, Liu X. Chem. Soc. Rev. 2009;38:976–989. - PubMed
    2. Haase M, Schäfer H. Angew. Chem. Int. Ed. 2011;50:5808–5829. - PubMed
    3. Auzel F. Chem. Rev. 2003;104:139–174. - PubMed
    4. Feng W, Sun L, Zhang Y, Yan C. Coord. Chem. Rev. 2010;254:1038–1053.
    5. Mader HS, Kele P, Saleh SM, Wolfbeis OS. Curr. Opin. Chem. Biol. 2010;14:582–596. - PubMed
    6. Li L, Zhang R, Yin L, Zheng K, Qin W, Selvin PR, Lu Y. Angew. Chem. Int. Ed. 2012;51:6121–6125. - PMC - PubMed
    7. Ju Q, Tu D, Liu Y, Li R, Zhu H, Chen J, Chen Z, Huang M, Chen X. J. Am. Chem. Soc. 2012;134:1323–1330. - PubMed
    8. Zhou J, Yao L, Li C, Li F. J. Mater. Chem. 2010;20:8078–8085.
    9. Liu Y, Tu D, Zhu H, Li R, Luo W, Chen X. Adv. Mater. 2010;22:3266–3271. - PubMed
    10. Liu Y, Zhou S, Tu D, Chen Z, Huang M, Zhu H, Ma E, Chen X. J. Am. Chem. Soc. 2012;134:15083–15090. - PubMed
    11. Wu S, Duan N, Wang Z, Wang H. Analyst. 2011;136:2306–2314. - PubMed
    12. Yang Y, Shao Q, Deng R, Wang C, Teng X, Cheng K, Cheng Z, Huang L, Liu Z, Liu X, Xing B. Angew. Chem. Int. Ed. 2012;51:3125–3129. - PubMed
    1. Wang F, Han Y, Lim CS, Lu YH, Wang J, Xu J, Chen HY, Zhang C, Hong M, Liu X. Nature. 2010;463:1061–1065. - PubMed
    2. Deng R, Xie X, Vendrell M, Chang Y-T, Liu X. J. Am. Chem. Soc. 2011;133:20168–20171. - PubMed
    3. Mai H, Zhang Y, Si R, Yan Z, Sun L, You L, Yan C. J. Am. Chem. Soc. 2006;128:6426–6436. - PubMed
    4. Li Z, Zhang Y, Jiang S. Adv. Mater. 2008;20:4765–4769.
    5. Wang L, Yan R, Huo Z, Wang L, Zeng J, Bao J, Wang X, Peng Q, Li Y. Angew. Chem. Int. Ed. 2005;44:6054–6057. - PubMed
    6. Zhou J, Liu Z, Li F. Chem. Soc. Rev. 2012;41:1323–1349. - PubMed
    7. Abel KA, Boyer JC, van Veggel FCJM. J. Am. Chem. Soc. 2009;131:14644–14645. - PubMed
    8. Cheng L, Yang K, Li Y, Chen J, Wang C, Shao M, Lee S, Liu Z. Angew. Chem. Int. Ed. 2011;50:7385–7390. - PubMed
    9. Nam SH, Bae YM, Il Park Y, Kim JH, Kim HM, Choi JS, Lee KT, Hyeon T, Suh YD. Angew. Chem. Int. Ed. 2011;50:6093–6097. - PubMed
    10. Nyk M, Kumar R, Ohulchanskyy TY, Bergey EJ, Prasad PN. Nano Lett. 2008;8:3834–3838. - PMC - PubMed
    11. Wu S, Han G, Milliron DJ, Aloni S, Altoe V, Talapin DV, Cohen BE, Schuck PJ. Proc Natl. Acad. Sci. USA. 2009;106:10917–10921. - PMC - PubMed
    12. Bogdan N, Vetrone F, Ozin GA, Capobianco JA. Nano Lett. 2011;11:835–840. - PubMed
    13. Ye X, Collins J, Kang Y, Chen J, Chen DTN, Yodh AG, Murray CB. Proc. Natl. Acad. Sci. USA. 2010;107:22430–22435. - PMC - PubMed
    14. Zhang F, Braun GB, Shi Y, Zhang Y, Sun X, Reich N, Zhao D, Stucky G. J. Am. Chem. Soc. 2010;132:2850–2851. - PubMed
    15. Tu D, Liu L, Ju Q, Liu Y, Zhu H, Li R, Chen X. Angew. Chem. Int. Ed. 2011;50:6306–6310. - PubMed
    1. Pinheiro AV, Han D, Shih WM, Yan H. Nat. Nanotechnol. 2011;6:763–772. - PMC - PubMed
    2. Dhar S, Daniel WL, Giljohann DA, Mirkin CA, Lippard SJ. J. Am. Chem. Soc. 2009;131:14652–14653. - PMC - PubMed
    1. Mirkin CA, Letsinger RL, Mucic RC, Storhoff JJ. Nature. 1996;382:607–609. - PubMed
    2. Alivisatos AP, Johnsson KP, Peng X, Wilson TE, Loweth CJ, Bruchez MP, Jr, Schultz PG. Nature. 1996;382:609–611. - PubMed
    1. Liu J, Cao Z, Lu Y. Chem. Rev. 2009;109:1948–1998. - PMC - PubMed
    2. Zhao W, Chiuman W, Lam JCF, McManus SA, Chen W, Cui Y, Pelton R, Brook MA, Li Y. J. Am. Chem. Soc. 2008;130:3610–3618. - PubMed
    3. Guo S, Wang E. Acc. Chem. Res. 2011;44:491–500. - PubMed
    4. Wang H, Yang R, Yang L, Tan W. ACS Nano. 2009;3:2451–2460. - PMC - PubMed
    5. Li D, Song SP, Fan CH. Acc. Chem. Res. 2010;43:631–641. - PubMed

Publication types