Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013;8(1):e54662.
doi: 10.1371/journal.pone.0054662. Epub 2013 Jan 24.

Urinary microRNA profiling in the nephropathy of type 1 diabetes

Affiliations

Urinary microRNA profiling in the nephropathy of type 1 diabetes

Christos Argyropoulos et al. PLoS One. 2013.

Erratum in

  • PLoS One. 2013;8(8). doi:10.1371/annotation/37e647d5-1781-4edf-86a8-e3b533c32ad9

Abstract

Background: Patients with Type 1 Diabetes (T1D) are particularly vulnerable to development of Diabetic nephropathy (DN) leading to End Stage Renal Disease. Hence a better understanding of the factors affecting kidney disease progression in T1D is urgently needed. In recent years microRNAs have emerged as important post-transcriptional regulators of gene expression in many different health conditions. We hypothesized that urinary microRNA profile of patients will differ in the different stages of diabetic renal disease.

Methods and findings: We studied urine microRNA profiles with qPCR in 40 T1D with >20 year follow up 10 who never developed renal disease (N) matched against 10 patients who went on to develop overt nephropathy (DN), 10 patients with intermittent microalbuminuria (IMA) matched against 10 patients with persistent (PMA) microalbuminuria. A Bayesian procedure was used to normalize and convert raw signals to expression ratios. We applied formal statistical techniques to translate fold changes to profiles of microRNA targets which were then used to make inferences about biological pathways in the Gene Ontology and REACTOME structured vocabularies. A total of 27 microRNAs were found to be present at significantly different levels in different stages of untreated nephropathy. These microRNAs mapped to overlapping pathways pertaining to growth factor signaling and renal fibrosis known to be targeted in diabetic kidney disease.

Conclusions: Urinary microRNA profiles differ across the different stages of diabetic nephropathy. Previous work using experimental, clinical chemistry or biopsy samples has demonstrated differential expression of many of these microRNAs in a variety of chronic renal conditions and diabetes. Combining expression ratios of microRNAs with formal inferences about their predicted mRNA targets and associated biological pathways may yield useful markers for early diagnosis and risk stratification of DN in T1D by inferring the alteration of renal molecular processes.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: While engaged in this project, Dr. Christos Argyropoulos was a salaried employee of the University of Pittsburgh. Since the completion of the work presented herein Dr. Argyropoulos has served as a consultant to the Medical Department of the Greek Affiliate of Abbott Laboratories, a global healthcare company that manufactures diabetes care products and develops pharmaceuticals for the treatment of diabetic nephropathy. The views and opinions in this research project are solely those of the contributing authors and do not necessarily reflect those of Abbott Laboratories.

Figures

Figure 1
Figure 1. Schematic representation of the normalization procedure and estimation of relative fold changes adopted in the manuscript.
Replicate qPCR reactions were analyzed with a hierarchical linear mixed model in order to estimate panel specific correction factors that were subtracted from the raw Cq signals of unreplicated reactions (first step), while simultaneously estimating the difference (ΔCq) between an experimental and referent state. In the second step, the ΔCq of the spiked in control was subtracted from the non-control ΔCq values to calibrate the relative fold changes according to the Delta-Delta method. Both steps of the normalization procedure acknowledged the uncertainty implicit in estimating the ΔCq of both control and non-control signals (shown as a density plot at the bottom part of the figure), by performing this subtraction probabilistically i.e. by Monte Carlo methods.
Figure 2
Figure 2. Results of Principal Component Analysis applied to all urine samples analyzed in this study.
To present the results of the five dimensional PCA, we utilized bivariate projections in which each component is plotted against all e.g. the second plot in the first row plots the first principal component (PC1) against the second (PC2). Each individual urine sample is color and symbol coded according to the disease classification at the time it was collected. N: patients without nephropathy, DN: patients with overt nephropathy, IMA(B): normoalbuminuric samples from patients who had intermittent microalbuminuria, PMA(B): last normoalbuminuric samples from patients who had persistent albuminuria, IMA: micro-albuminuric samples from patients who had intermittent micro-albuminuria, PMA: micro-albuminuric samples from patients who had persistent microalbuminuria.
Figure 3
Figure 3. Results of Principal Component Analysis rendered according to pair identification number.
This figure utilizes the same bivariate projection setup as Figure 2, but points are symbol coded according to the unique identifier used when matching patients into pairs. For patients with MA who contributed two samples (one at the baseline and one at the microalbuminuric state) there are more than 2 points with the same symbol.
Figure 4
Figure 4. Distribution of the number of mRNAs targeted by differentially regulated microRNAs in diabetic urine.

References

    1. Molitch ME, DeFronzo RA, Franz MJ, Keane WF, Mogensen CE, et al. (2004) Nephropathy in diabetes. Diabetes Care 27 Suppl 1S79–83. - PubMed
    1. Kanwar YS, Sun L, Xie P, Liu F-Y, Chen S (2011) A glimpse of various pathogenetic mechanisms of diabetic nephropathy. Annu Rev Pathol 6: 395–423 doi:10.1146/annurev.pathol.4.110807.092150. - DOI - PMC - PubMed
    1. Carthew RW, Sontheimer EJ (2009) Origins and Mechanisms of miRNAs and siRNAs. Cell 136: 642–655 doi:10.1016/j.cell.2009.01.035. - DOI - PMC - PubMed
    1. Lee RC, Ambros V (2001) An extensive class of small RNAs in Caenorhabditis elegans. Science 294: 862–864 doi:10.1126/science.1065329. - DOI - PubMed
    1. Guo H, Ingolia NT, Weissman JS, Bartel DP (2010) Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature 466: 835–840 doi:10.1038/nature09267. - DOI - PMC - PubMed

Publication types