ACTN3 allele frequency in humans covaries with global latitudinal gradient
- PMID: 23359641
- PMCID: PMC3554748
- DOI: 10.1371/journal.pone.0052282
ACTN3 allele frequency in humans covaries with global latitudinal gradient
Abstract
A premature stop codon in ACTN3 resulting in α-actinin-3 deficiency (the ACTN3 577XX genotype) is common in humans and reduces strength, muscle mass, and fast-twitch fiber diameter, but increases the metabolic efficiency of skeletal muscle. Linkage disequilibrium data suggest that the ACTN3 R577X allele has undergone positive selection during human evolution. The allele has been hypothesized to be adaptive in environments with scarce resources where efficient muscle metabolism would be selected. Here we test this hypothesis by using recently developed comparative methods that account for evolutionary relatedness and gene flow among populations. We find evidence that the ACTN3 577XX genotype evolved in association with the global latitudinal gradient. Our results suggest that environmental variables related to latitudinal variation, such as species richness and mean annual temperature, may have influenced the adaptive evolution of ACTN3 577XX during recent human history.
Conflict of interest statement
Figures
References
-
- MacArthur DG, North KN (2004) A gene for speed? The evolution and function of alpha-actinin-3. Bioessays 26: 786–795. - PubMed
-
- Vincent B, De Bock K, Ramaekers M, Van den Eede E, Van Leemputte M, et al. (2007) ACTN3 (R577X) genotype is associated with fiber type distribution. Physiological Genomics 32: 58–63. - PubMed
-
- Mills MA, Yang N, Weinberger RP, Vander Woude DL, Beggs AH, et al. (2001) Differential expression of the actin-binding proteins, α-actinin-2 and-3, in different species: implications for the evolution of functional redundancy. Human Molecular Genetics 10: 1335–1346. - PubMed
-
- North KN, Yang N, Wattanasirichaigoon D, Mills M, Easteal S, et al. (1999) A common nonsense mutation results in a-actinin-3 deficiency in the general population. Nature Genetics 21: 353–354. - PubMed
-
- Lek M, Quinlan KGR, North KN (2010) The evolution of skeletal muscle performance: gene duplication and divergence of human sarcomeric alpha-actinins. Bioessays 32: 17–25. - PubMed
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
