Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Mar 11;14(3):719-27.
doi: 10.1021/bm3018033. Epub 2013 Feb 13.

Macroporous silk fibroin cryogels

Affiliations

Macroporous silk fibroin cryogels

Fatih Ak et al. Biomacromolecules. .

Abstract

Silk fibroin cryogels with remarkable properties were obtained from frozen fibroin solutions (4.2-12.6%) at subzero temperatures between -5 and -22 °C. This was achieved by the addition of ethylene glycol diglycidyl ether (EGDE) into the cryogelation system. EGDE triggers the conformational transition of fibroin from random coil to β-sheet structure and hence fibroin gelation. One of the unique features of fibroin cryogels is their elasticity that allows them to resist complete compression without any crack development, during which water inside the cryogel is removed. The compressed cryogel immediately swells during unloading to recover its original shape. The scaffolds obtained by freeze-drying of the cryogels consist of regular, interconnected pores of diameters ranging from 50 to 10 μm that could be regulated by the synthesis parameters. The mechanical compressive strength and the modulus of the scaffolds increase with decreasing pore diameter, that is, with decreasing gelation temperature or, with increasing fibroin or EGDE concentrations in the feed. The scaffolds produced at 12.6% fibroin exhibit a very high compressive modulus (50 MPa) making them good candidates as bone scaffold materials.

PubMed Disclaimer

Publication types

LinkOut - more resources