Inferring the kinetics of stochastic gene expression from single-cell RNA-sequencing data
- PMID: 23360624
- PMCID: PMC3663116
- DOI: 10.1186/gb-2013-14-1-r7
Inferring the kinetics of stochastic gene expression from single-cell RNA-sequencing data
Abstract
Background: Genetically identical populations of cells grown in the same environmental condition show substantial variability in gene expression profiles. Although single-cell RNA-seq provides an opportunity to explore this phenomenon, statistical methods need to be developed to interpret the variability of gene expression counts.
Results: We develop a statistical framework for studying the kinetics of stochastic gene expression from single-cell RNA-seq data. By applying our model to a single-cell RNA-seq dataset generated by profiling mouse embryonic stem cells, we find that the inferred kinetic parameters are consistent with RNA polymerase II binding and chromatin modifications. Our results suggest that histone modifications affect transcriptional bursting by modulating both burst size and frequency. Furthermore, we show that our model can be used to identify genes with slow promoter kinetics, which are important for probabilistic differentiation of embryonic stem cells.
Conclusions: We conclude that the proposed statistical model provides a flexible and efficient way to investigate the kinetics of transcription.
Figures




Similar articles
-
Single-cell new RNA sequencing reveals principles of transcription at the resolution of individual bursts.Nat Cell Biol. 2024 Oct;26(10):1725-1733. doi: 10.1038/s41556-024-01486-9. Epub 2024 Aug 28. Nat Cell Biol. 2024. PMID: 39198695 Free PMC article.
-
Genome-wide RNA polymerase II profiles and RNA accumulation reveal kinetics of transcription and associated epigenetic changes during diurnal cycles.PLoS Biol. 2012;10(11):e1001442. doi: 10.1371/journal.pbio.1001442. Epub 2012 Nov 27. PLoS Biol. 2012. PMID: 23209382 Free PMC article.
-
BISC: accurate inference of transcriptional bursting kinetics from single-cell transcriptomic data.Brief Bioinform. 2022 Nov 19;23(6):bbac464. doi: 10.1093/bib/bbac464. Brief Bioinform. 2022. PMID: 36326081
-
The RNA polymerase II transcriptional machinery and its epigenetic context.Subcell Biochem. 2013;61:237-59. doi: 10.1007/978-94-007-4525-4_11. Subcell Biochem. 2013. PMID: 23150254 Review.
-
Transcription in Living Cells: Molecular Mechanisms of Bursting.Annu Rev Biochem. 2020 Jun 20;89:189-212. doi: 10.1146/annurev-biochem-011520-105250. Epub 2020 Mar 24. Annu Rev Biochem. 2020. PMID: 32208766 Review.
Cited by
-
Computational and analytical challenges in single-cell transcriptomics.Nat Rev Genet. 2015 Mar;16(3):133-45. doi: 10.1038/nrg3833. Epub 2015 Jan 28. Nat Rev Genet. 2015. PMID: 25628217 Review.
-
Quantifying how post-transcriptional noise and gene copy number variation bias transcriptional parameter inference from mRNA distributions.Elife. 2022 Oct 17;11:e82493. doi: 10.7554/eLife.82493. Elife. 2022. PMID: 36250630 Free PMC article.
-
pyNVR: investigating factors affecting feature selection from scRNA-seq data for lineage reconstruction.Bioinformatics. 2019 Jul 1;35(13):2335-2337. doi: 10.1093/bioinformatics/bty950. Bioinformatics. 2019. PMID: 30445607 Free PMC article.
-
SCALE: modeling allele-specific gene expression by single-cell RNA sequencing.Genome Biol. 2017 Apr 26;18(1):74. doi: 10.1186/s13059-017-1200-8. Genome Biol. 2017. PMID: 28446220 Free PMC article.
-
Integrated single cell data analysis reveals cell specific networks and novel coactivation markers.BMC Syst Biol. 2016 Dec 5;10(Suppl 5):127. doi: 10.1186/s12918-016-0370-4. BMC Syst Biol. 2016. PMID: 28105940 Free PMC article.
References
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources