Analytic methods for modeling stochastic regulatory networks
- PMID: 23361990
- DOI: 10.1007/978-1-61779-833-7_13
Analytic methods for modeling stochastic regulatory networks
Abstract
Recent single-cell experiments have revived interest in the unavoidable or intrinsic noise in biochemical and genetic networks arising from the small number of molecules of the participating species. That is, rather than modeling regulatory networks in terms of the deterministic dynamics of concentrations, we model the dynamics of the probability of a given copy number of the reactants in single cells. Most of the modeling activity of the last decade has centered on stochastic simulation, i.e., Monte Carlo methods for generating stochastic time series. Here we review the mathematical description in terms of probability distributions, introducing the relevant derivations and illustrating several cases for which analytic progress can be made either instead of or before turning to numerical computation. Analytic progress can be useful both for suggesting more efficient numerical methods and for obviating the computational expense of, for example, exploring parametric dependence.
Similar articles
-
Stochastic modeling of cellular networks.Methods Cell Biol. 2012;110:111-37. doi: 10.1016/B978-0-12-388403-9.00005-9. Methods Cell Biol. 2012. PMID: 22482947
-
Classical versus stochastic kinetics modeling of biochemical reaction systems.Biophys J. 2007 Apr 1;92(7):2350-65. doi: 10.1529/biophysj.106.093781. Epub 2007 Jan 11. Biophys J. 2007. PMID: 17218456 Free PMC article.
-
On the attenuation and amplification of molecular noise in genetic regulatory networks.BMC Bioinformatics. 2006 Feb 2;7:52. doi: 10.1186/1471-2105-7-52. BMC Bioinformatics. 2006. PMID: 16457708 Free PMC article.
-
Stochastic and delayed stochastic models of gene expression and regulation.Math Biosci. 2010 Jan;223(1):1-11. doi: 10.1016/j.mbs.2009.10.007. Epub 2009 Oct 31. Math Biosci. 2010. PMID: 19883665 Review.
-
Methodologies for the modeling and simulation of biochemical networks, illustrated for signal transduction pathways: a primer.Biosystems. 2015 Mar;129:1-18. doi: 10.1016/j.biosystems.2015.01.008. Epub 2015 Jan 28. Biosystems. 2015. PMID: 25637875 Review.
Cited by
-
Temporal precision of regulated gene expression.PLoS Comput Biol. 2018 Jun 7;14(6):e1006201. doi: 10.1371/journal.pcbi.1006201. eCollection 2018 Jun. PLoS Comput Biol. 2018. PMID: 29879102 Free PMC article.
-
Nonequilibrium models of optimal enhancer function.Proc Natl Acad Sci U S A. 2020 Dec 15;117(50):31614-31622. doi: 10.1073/pnas.2006731117. Epub 2020 Dec 2. Proc Natl Acad Sci U S A. 2020. PMID: 33268497 Free PMC article.
-
Information integration and decision making in flowering time control.PLoS One. 2020 Sep 23;15(9):e0239417. doi: 10.1371/journal.pone.0239417. eCollection 2020. PLoS One. 2020. PMID: 32966329 Free PMC article.
-
Dynamic network-guided CRISPRi screen identifies CTCF-loop-constrained nonlinear enhancer gene regulatory activity during cell state transitions.Nat Genet. 2023 Aug;55(8):1336-1346. doi: 10.1038/s41588-023-01450-7. Epub 2023 Jul 24. Nat Genet. 2023. PMID: 37488417 Free PMC article.
-
Probability distributions for multimeric systems.J Math Biol. 2016 Jan;72(1-2):157-69. doi: 10.1007/s00285-015-0877-0. Epub 2015 Apr 4. J Math Biol. 2016. PMID: 25840518
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources