Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 May;61(5):710-23.
doi: 10.1002/glia.22464. Epub 2013 Jan 30.

Repulsive migration of Schwann cells induced by Slit-2 through Ca2+-dependent RhoA-myosin signaling

Affiliations

Repulsive migration of Schwann cells induced by Slit-2 through Ca2+-dependent RhoA-myosin signaling

Ying Wang et al. Glia. 2013 May.

Abstract

Schwann cells migrate along axons before initiating myelination during development and their migration facilitates peripheral nerve regeneration after injury. Axon guidance molecule Slit-2 is highly expressed during peripheral development and nerve regeneration; however, whether Slit-2 regulates the migration of Schwann cells remains a mystery. Here we show that Slit-2 receptor Robo-1 and Robo-2 were highly expressed in Schwann cells in vitro and in vivo. Using three distinct migration assays, we found that Slit-2 repelled the migration of cultured Schwann cells. Furthermore, frontal application of a Slit-2 gradient to migrating Schwann cells first caused the collapse of leading front, and then reversed soma translocation of Schwann cells. The repulsive effects of Slit-2 on Schwann cell migration depended on a Ca(2+) signaling release from internal stores. Interestingly, in response to Slit-2 stimulation, the collapse of leading front required the loss of F-actin and focal adhesion, whereas the subsequent reversal of soma translocation depended on RhoA-Rock-Myosin signaling pathways. Taken together, we demonstrate that Slit-2 repels the migration of cultured Schwann cells through RhoA-Myosin signaling pathways in a Ca(2+)-dependent manner.

PubMed Disclaimer

Publication types

LinkOut - more resources