Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Feb 19;85(4):1972-9.
doi: 10.1021/ac303620y. Epub 2013 Feb 4.

Nanoscale infrared spectroscopy: improving the spectral range of the photothermal induced resonance technique

Affiliations

Nanoscale infrared spectroscopy: improving the spectral range of the photothermal induced resonance technique

Aaron M Katzenmeyer et al. Anal Chem. .

Abstract

Photothermal induced resonance (PTIR) is a new technique which combines the chemical specificity of infrared (IR) spectroscopy with the lateral resolution of atomic force microscopy (AFM). PTIR requires a pulsed tunable laser for sample excitation and an AFM tip to measure the sample expansion induced by light absorption. The limited tunability of commonly available laser sources constrains the application of the PTIR technique to a portion of the IR spectrum. In this work, a broadly tunable pulsed laser relying on a difference frequency generation scheme in a GaSe crystal to emit light tunable from 1.55 μm to 16 μm (from 6450 cm(-1) to 625 cm(-1)) was interfaced with a commercial PTIR instrument. The result is a materials characterization platform capable of chemical imaging, in registry with atomic force images, with a spatial resolution that notably surpasses the light diffraction limit throughout the entire mid-IR spectral range. PTIR nanoscale spectra and images allow the identification of compositionally and optically similar yet distinct materials; organic, inorganic, and composite samples can be studied with this nanoscale analog of infrared spectroscopy, suggesting broad applicability. Additionally, we compare the results obtained with the two tunable lasers, which have different pulse lengths, to experimentally assess the recently developed theory of PTIR signal generation.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources