NDM-1, the ultimate promiscuous enzyme: substrate recognition and catalytic mechanism
- PMID: 23363572
- PMCID: PMC3633820
- DOI: 10.1096/fj.12-224014
NDM-1, the ultimate promiscuous enzyme: substrate recognition and catalytic mechanism
Abstract
The specter of a return to an era in which infectious disease looms as a significant threat to human health is not just hyperbole; there are serious concerns about the widespread overuse and misuse of antibiotics contributing to increased antibiotic resistance in pathogens. The recent discovery of a new enzyme, first identified in Klebsiella pneumoniae from a patient from New Delhi and denoted as NDM-1, represents an example of extreme promiscuity: It hydrolyzes and inactivates nearly all known β-lactam-based antibiotics with startling efficiency. NDM-1 can utilize different metal cofactors and seems to exploit an alternative mechanism based on the reaction conditions. Here we report the results of a combined experimental and theoretical study that examines the substrate, metal binding, and catalytic mechanism of the enzyme. We utilize structures obtained through X-ray crystallography, biochemical assays, and numerical simulation to construct a model of the enzyme catalytic pathway. The NDM-1 enzyme interacts with the substrate solely through zinc, or other metals, bound in the active site, explaining the observed lack of specificity against a broad range of β-lactam antibiotic agents. The zinc ions also serve to activate a water molecule that hydrolyzes the β-lactam ring through a proton shuttle.
Figures






Similar articles
-
Characterization of purified New Delhi metallo-β-lactamase-1.Biochemistry. 2011 Nov 22;50(46):10102-13. doi: 10.1021/bi201449r. Epub 2011 Nov 1. Biochemistry. 2011. PMID: 22029287
-
New Delhi metallo-β-lactamase I: substrate binding and catalytic mechanism.J Phys Chem B. 2013 Oct 3;117(39):11596-607. doi: 10.1021/jp4065906. Epub 2013 Sep 11. J Phys Chem B. 2013. PMID: 24025144
-
A quantum mechanics/molecular mechanics study on the hydrolysis mechanism of New Delhi metallo-β-lactamase-1.J Comput Aided Mol Des. 2013 Mar;27(3):247-56. doi: 10.1007/s10822-012-9630-6. Epub 2013 Mar 2. J Comput Aided Mol Des. 2013. PMID: 23456591
-
Recent research and development of NDM-1 inhibitors.Eur J Med Chem. 2021 Nov 5;223:113667. doi: 10.1016/j.ejmech.2021.113667. Epub 2021 Jun 24. Eur J Med Chem. 2021. PMID: 34225181 Review.
-
Enzyme Inhibitors: The Best Strategy to Tackle Superbug NDM-1 and Its Variants.Int J Mol Sci. 2021 Dec 24;23(1):197. doi: 10.3390/ijms23010197. Int J Mol Sci. 2021. PMID: 35008622 Free PMC article. Review.
Cited by
-
Boronic Acids as Prospective Inhibitors of Metallo-β-Lactamases: Efficient Chemical Reaction in the Enzymatic Active Site Revealed by Molecular Modeling.Molecules. 2021 Apr 2;26(7):2026. doi: 10.3390/molecules26072026. Molecules. 2021. PMID: 33918209 Free PMC article.
-
Carbapenemases: Transforming Acinetobacter baumannii into a Yet More Dangerous Menace.Biomolecules. 2020 May 6;10(5):720. doi: 10.3390/biom10050720. Biomolecules. 2020. PMID: 32384624 Free PMC article. Review.
-
Investigating the promiscuity of the chloramphenicol nitroreductase from Haemophilus influenzae towards the reduction of 4-nitrobenzene derivatives.Bioorg Med Chem Lett. 2019 May 1;29(9):1127-1132. doi: 10.1016/j.bmcl.2019.02.025. Epub 2019 Feb 21. Bioorg Med Chem Lett. 2019. PMID: 30826292 Free PMC article.
-
Catalytic site flexibility facilitates the substrate and catalytic promiscuity of Vibrio dual lipase/transferase.Nat Commun. 2023 Aug 9;14(1):4795. doi: 10.1038/s41467-023-40455-y. Nat Commun. 2023. PMID: 37558668 Free PMC article.
-
A Kinetic Study of the Replacement by Site Saturation Mutagenesis of Residue 119 in NDM-1 Metallo-β-Lactamase.Antimicrob Agents Chemother. 2018 Jul 27;62(8):e02541-17. doi: 10.1128/AAC.02541-17. Print 2018 Aug. Antimicrob Agents Chemother. 2018. PMID: 29784851 Free PMC article.
References
-
- D'Costa V. M., King C. E., Kalan L., Morar M., Sung W. W., Schwarz C., Froese D., Zazula G., Calmels F., Debruyne R., Golding G. B., Poinar H. N., Wright G. D. (2011) Antibiotic resistance is ancient. Nature 477, 457–461 - PubMed
-
- Livermore D. M. (2009) Has the era of untreatable infections arrived? J. Antimicrob. Chemother. 64, i29–i36 - PubMed
-
- Fisher J. F., Meroueh S. O., Mobashery S. (2005) Bacterial resistance to β-lactam antibiotics: compelling opportunism, compelling opportunity. Chem. Rev. 105, 395–424 - PubMed
-
- Kumarasamy K. K., Toleman M. A., Walsh T. R., Bagaria J., Butt F., Balakrishnan R., Chaudhary U., Doumith M., Giske C. G., Irfan S., Krishnan P., Kumar A. V., Maharjan S., Mushtaq S., Noorie T., Paterson D. L., Pearson A., Perry C., Pike R., Rao B., Ray U., Sarma J. B., Sharma M., Sheridan E., Thirunarayan M. A., Turton J., Upadhyay S., Warner M., Welfare W., Livermore D. M., Woodford N. (2010) Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK: a molecular, biological, and epidemiological study. Lancet Infect. Dis. 10, 597–602 - PMC - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources