Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1990 May;122(2):197-208.

Effects of irradiation on nuclear protein synthesis in G2 phase of the cell cycle

Affiliations
  • PMID: 2336466

Effects of irradiation on nuclear protein synthesis in G2 phase of the cell cycle

J M Holland et al. Radiat Res. 1990 May.

Abstract

A method was developed to determine the synthesis of nuclear proteins throughout the cell cycle which was resolved into six compartments on the basis of DNA and nuclear protein content (i.e., early and late G1, early and late S, etc). Using this technique cell-cycle-specific synthesis of certain nuclear proteins was observed. Of particular interest was a 170-kDa protein(s) whose synthesis was initiated in early S phase and reached a maximum rate in late G2. Following irradiation with 6.8 Gy of 137Cs gamma rays the synthesis of the 170-kDa protein(s) declined in the G2 population with near total inhibition seen by 24 h. Synthesis of the 170-kDa protein(s) appeared to be slightly enhanced, and the postirradiation inhibition of its synthesis was reversed, in the presence of 3 mM caffeine. Also, the synthesis of 55-kDa nuclear protein(s) was stimulated throughout the cell cycle in the presence of 3 mM caffeine. These observations suggest new possibilities regarding the mechanism of the X-ray-induced G2 block and its reversal by caffeine. However, the exact role of these nuclear proteins in cellular events remains to be ascertained.

PubMed Disclaimer

Similar articles

Publication types