A physiologically motivated sparse, compact, and smooth (SCS) approach to EEG source localization
- PMID: 23366198
- PMCID: PMC4139402
- DOI: 10.1109/EMBC.2012.6346237
A physiologically motivated sparse, compact, and smooth (SCS) approach to EEG source localization
Abstract
Here, we introduce a novel approach to the EEG inverse problem based on the assumption that principal cortical sources of multi-channel EEG recordings may be assumed to be spatially sparse, compact, and smooth (SCS). To enforce these characteristics of solutions to the EEG inverse problem, we propose a correlation-variance model which factors a cortical source space covariance matrix into the multiplication of a pre-given correlation coefficient matrix and the square root of the diagonal variance matrix learned from the data under a Bayesian learning framework. We tested the SCS method using simulated EEG data with various SNR and applied it to a real ECOG data set. We compare the results of SCS to those of an established SBL algorithm.
Figures






Similar articles
-
Fast and robust Block-Sparse Bayesian learning for EEG source imaging.Neuroimage. 2018 Jul 1;174:449-462. doi: 10.1016/j.neuroimage.2018.03.048. Epub 2018 Mar 27. Neuroimage. 2018. PMID: 29596978
-
An evaluation of EEG scanner's dependence on the imaging technique, forward model computation method, and array dimensionality.Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012:1538-41. doi: 10.1109/EMBC.2012.6346235. Annu Int Conf IEEE Eng Med Biol Soc. 2012. PMID: 23366196
-
Unification of sparse Bayesian learning algorithms for electromagnetic brain imaging with the majorization minimization framework.Neuroimage. 2021 Oct 1;239:118309. doi: 10.1016/j.neuroimage.2021.118309. Epub 2021 Jun 26. Neuroimage. 2021. PMID: 34182100 Free PMC article.
-
A spatially-regularized dynamic source localization algorithm for EEG.Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012:6752-5. doi: 10.1109/EMBC.2012.6347544. Annu Int Conf IEEE Eng Med Biol Soc. 2012. PMID: 23367479
-
Development of volume conductor and source models to localize epileptic foci.J Clin Neurophysiol. 2007 Apr;24(2):101-19. doi: 10.1097/WNP.0b013e318038fb3e. J Clin Neurophysiol. 2007. PMID: 17414966 Review.
Cited by
-
Simultaneous head tissue conductivity and EEG source location estimation.Neuroimage. 2016 Jan 1;124(Pt A):168-180. doi: 10.1016/j.neuroimage.2015.08.032. Epub 2015 Aug 22. Neuroimage. 2016. PMID: 26302675 Free PMC article.
References
-
- Huang M, Dale A, Song T, Halgren E, Harrington D, Podgorny I, Carnive J, Lewis S, Lee R. Vector-based spatial-temporal minimum l1-norm solution for MEG. NeuroImage. 2006;31(3):1025–1037. - PubMed
-
- Pascual-Marqui D, Esslen M, Kochi K, Lehmann D. Functional imaging with low resolution brain electromagnetic tomography (LORETA): a review. Methods & Findings in Experimental & Clinical Pharmacology. 2002;24:91–95. - PubMed
-
- Friston K, Harrison L, Daunizeau J, Kiebel S, Phillips C, Barreto N, Henson R, Flandin G, Mattout J. Multiple sparse priors for the M/EEG inverse problem. NeuroImage. 2008;39(3):1104–1120. - PubMed
-
- Wipf D, Nagarajan S. Iterative Reweighted l1 and l2 Methods for Finding Sparse Solutions. IEEE. J. Selected Topics In Signal Processing. 2010;4(2):317–329.
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources