Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Clinical Trial
. 2012:2012:1798-801.
doi: 10.1109/EMBC.2012.6346299.

Continuous decoding of motor attempt and motor imagery from EEG activity in spinal cord injury patients

Affiliations
Clinical Trial

Continuous decoding of motor attempt and motor imagery from EEG activity in spinal cord injury patients

Eduardo López-Larraz et al. Annu Int Conf IEEE Eng Med Biol Soc. 2012.

Abstract

Spinal cord injury (SCI) associates brain reorganization with a loss of cortical representation of paralyzed limbs. This effect is more pronounced in the chronic state, which can be reached approximately 6 months after the lesion. As many of the brain-computer interfaces (BCI) developed to date rely on the user motor activity, loss of this activity hinders the application of BCI technology for rehabilitation or motor compensation in these patients. This work is a preliminary study with three quadriplegic patients close to reaching the chronic state, addressing two questions: (i) whether it is still possible to use BCI technology to detect motor intention of the paralyzed hand at this state of chronicity; and (ii) whether it is better for the BCI decoding to rely on the motor attempt or the motor imagery of the hand as mental paradigm. The results show that one of the three patients had already lost the motor programs related to the hand, so it was not possible to build a motor-related BCI for him. For the other patients it was suitable to design a BCI based on both paradigms, but the results were better using motor attempt as it has broader activation associated patterns that are easier to recognize.

PubMed Disclaimer

Publication types