On the challenge of classifying 52 hand movements from surface electromyography
- PMID: 23367034
- DOI: 10.1109/EMBC.2012.6347099
On the challenge of classifying 52 hand movements from surface electromyography
Abstract
The level of dexterity of myoelectric hand prostheses depends to large extent on the feature representation and subsequent classification of surface electromyography signals. This work presents a comparison of various feature extraction and classification methods on a large-scale surface electromyography database containing 52 different hand movements obtained from 27 subjects. Results indicate that simple feature representations as Mean Absolute Value and Waveform Length can achieve similar performance to the computationally more demanding marginal Discrete Wavelet Transform. With respect to classifiers, the Support Vector Machine was found to be the only method that consistently achieved top performance in combination with each feature extraction method.
Similar articles
-
Ranking hand movements for myoelectric pattern recognition considering forearm muscle structure.Med Biol Eng Comput. 2017 Aug;55(8):1507-1518. doi: 10.1007/s11517-016-1608-4. Epub 2017 Jan 4. Med Biol Eng Comput. 2017. PMID: 28054301
-
Movement error rate for evaluation of machine learning methods for sEMG-based hand movement classification.IEEE Trans Neural Syst Rehabil Eng. 2014 Jul;22(4):735-44. doi: 10.1109/TNSRE.2014.2303394. Epub 2014 Jan 29. IEEE Trans Neural Syst Rehabil Eng. 2014. PMID: 24760932
-
Extraction and Classification of Multichannel Electromyographic Activation Trajectories for Hand Movement Recognition.IEEE Trans Neural Syst Rehabil Eng. 2016 Jun;24(6):662-73. doi: 10.1109/TNSRE.2015.2447217. Epub 2015 Jun 18. IEEE Trans Neural Syst Rehabil Eng. 2016. PMID: 26099148
-
Surface electromyography signal processing and classification techniques.Sensors (Basel). 2013 Sep 17;13(9):12431-66. doi: 10.3390/s130912431. Sensors (Basel). 2013. PMID: 24048337 Free PMC article. Review.
-
A Review of Classification Techniques of EMG Signals during Isotonic and Isometric Contractions.Sensors (Basel). 2016 Aug 17;16(8):1304. doi: 10.3390/s16081304. Sensors (Basel). 2016. PMID: 27548165 Free PMC article. Review.
Cited by
-
Phase-Based Grasp Classification for Prosthetic Hand Control Using sEMG.Biosensors (Basel). 2022 Jan 21;12(2):57. doi: 10.3390/bios12020057. Biosensors (Basel). 2022. PMID: 35200318 Free PMC article.
-
Comparison of six electromyography acquisition setups on hand movement classification tasks.PLoS One. 2017 Oct 12;12(10):e0186132. doi: 10.1371/journal.pone.0186132. eCollection 2017. PLoS One. 2017. PMID: 29023548 Free PMC article.
-
Simultaneous Force Regression and Movement Classification of Fingers via Surface EMG within a Unified Bayesian Framework.Front Bioeng Biotechnol. 2018 Feb 26;6:13. doi: 10.3389/fbioe.2018.00013. eCollection 2018. Front Bioeng Biotechnol. 2018. PMID: 29536005 Free PMC article.
-
Variability of Muscle Synergies in Hand Grasps: Analysis of Intra- and Inter-Session Data.Sensors (Basel). 2020 Aug 1;20(15):4297. doi: 10.3390/s20154297. Sensors (Basel). 2020. PMID: 32752155 Free PMC article.
-
MS-CLSTM: Myoelectric Manipulator Gesture Recognition Based on Multi-Scale Feature Fusion CNN-LSTM Network.Biomimetics (Basel). 2024 Dec 23;9(12):784. doi: 10.3390/biomimetics9120784. Biomimetics (Basel). 2024. PMID: 39727788 Free PMC article.