Promise of a low power mobile CPU based embedded system in artificial leg control
- PMID: 23367113
- PMCID: PMC3676646
- DOI: 10.1109/EMBC.2012.6347178
Promise of a low power mobile CPU based embedded system in artificial leg control
Abstract
This paper presents the design and implementation of a low power embedded system using mobile processor technology (Intel Atom™ Z530 Processor) specifically tailored for a neural-machine interface (NMI) for artificial limbs. This embedded system effectively performs our previously developed NMI algorithm based on neuromuscular-mechanical fusion and phase-dependent pattern classification. The analysis shows that NMI embedded system can meet real-time constraints with high accuracies for recognizing the user's locomotion mode. Our implementation utilizes the mobile processor efficiently to allow a power consumption of 2.2 watts and low CPU utilization (less than 4.3%) while executing the complex NMI algorithm. Our experiments have shown that the highly optimized C program implementation on the embedded system has superb advantages over existing PC implementations on MATLAB. The study results suggest that mobile-CPU-based embedded system is promising for implementing advanced control for powered lower limb prostheses.
Figures
Similar articles
-
A special purpose embedded system for neural machine interface for artificial legs.Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:5207-10. doi: 10.1109/IEMBS.2011.6091288. Annu Int Conf IEEE Eng Med Biol Soc. 2011. PMID: 22255511 Free PMC article.
-
Design and implementation of a low power mobile CPU based embedded system for artificial leg control.Annu Int Conf IEEE Eng Med Biol Soc. 2013;2013:5769-72. doi: 10.1109/EMBC.2013.6610862. Annu Int Conf IEEE Eng Med Biol Soc. 2013. PMID: 24111049
-
An embedded controller for a 7-degree of freedom prosthetic arm.Annu Int Conf IEEE Eng Med Biol Soc. 2008;2008:185-8. doi: 10.1109/IEMBS.2008.4649121. Annu Int Conf IEEE Eng Med Biol Soc. 2008. PMID: 19162624
-
The functional reanimation of paralyzed limbs.IEEE Eng Med Biol Mag. 2005 Sep-Oct;24(5):45-51. doi: 10.1109/memb.2005.1511499. IEEE Eng Med Biol Mag. 2005. PMID: 16248116 Review. No abstract available.
-
Control of upper limb prostheses: terminology and proportional myoelectric control-a review.IEEE Trans Neural Syst Rehabil Eng. 2012 Sep;20(5):663-77. doi: 10.1109/TNSRE.2012.2196711. Epub 2012 May 30. IEEE Trans Neural Syst Rehabil Eng. 2012. PMID: 22665514 Review.
Cited by
-
Ambulation Mode Classification of Individuals with Transfemoral Amputation through A-Mode Sonomyography and Convolutional Neural Networks.Sensors (Basel). 2022 Dec 1;22(23):9350. doi: 10.3390/s22239350. Sensors (Basel). 2022. PMID: 36502055 Free PMC article.
-
Machine Learning Approaches for Activity Recognition and/or Activity Prediction in Locomotion Assistive Devices-A Systematic Review.Sensors (Basel). 2020 Nov 6;20(21):6345. doi: 10.3390/s20216345. Sensors (Basel). 2020. PMID: 33172158 Free PMC article.
References
-
- Zhang X, Yang Q, Huang H. A Neural-Controlled Cyber Physical System for Intent Recognition for Artificial Legs. presented at Design Automation Conference; San Francisco. 2012; (Accepted)
-
- Gonzalez I, El-Araby E, Saha P, El-Ghazawi T, Simmler H, Merchant S, Holland B, Reardon C, George A, Lam H, Stitt G, Alam N, Smith M. Classification of application development for FPGA-based systems. Conf Proc National Aerospace Electronics Conference; 2008.
-
- Mahoney J. Intel CEO: Atom Platform Something ‘Most of Us Wouldn't Use’. 2008 Jul; [online] Available: http://gizmodo.com/5026401/intel-ceo-atom-platform-something-most-of-us-... [March 22, 2012]
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Medical