How input fluctuations reshape the dynamics of a biological switching system
- PMID: 23367979
- PMCID: PMC5836738
- DOI: 10.1103/PhysRevE.86.061910
How input fluctuations reshape the dynamics of a biological switching system
Abstract
An important task in quantitative biology is to understand the role of stochasticity in biochemical regulation. Here, as an extension of our recent work [Phys. Rev. Lett. 107, 148101 (2011)], we study how input fluctuations affect the stochastic dynamics of a simple biological switch. In our model, the on transition rate of the switch is directly regulated by a noisy input signal, which is described as a non-negative mean-reverting diffusion process. This continuous process can be a good approximation of the discrete birth-death process and is much more analytically tractable. Within this setup, we apply the Feynman-Kac theorem to investigate the statistical features of the output switching dynamics. Consistent with our previous findings, the input noise is found to effectively suppress the input-dependent transitions. We show analytically that this effect becomes significant when the input signal fluctuates greatly in amplitude and reverts slowly to its mean.
Figures




Similar articles
-
Noise suppression and spectral decomposition for state-dependent noise in the presence of a stationary fluctuating input.Phys Rev E Stat Nonlin Soft Matter Phys. 2004 May;69(5 Pt 1):051110. doi: 10.1103/PhysRevE.69.051110. Epub 2004 May 28. Phys Rev E Stat Nonlin Soft Matter Phys. 2004. PMID: 15244811
-
Effects of input noise on a simple biochemical switch.Phys Rev Lett. 2011 Sep 30;107(14):148101. doi: 10.1103/PhysRevLett.107.148101. Epub 2011 Sep 28. Phys Rev Lett. 2011. PMID: 22107236 Free PMC article.
-
Fluctuating reaction rates and their application to problems of gene expression.Phys Rev E Stat Nonlin Soft Matter Phys. 2003 Jun;67(6 Pt 1):061906. doi: 10.1103/PhysRevE.67.061906. Epub 2003 Jun 20. Phys Rev E Stat Nonlin Soft Matter Phys. 2003. PMID: 16241260
-
Brownian motion and diffusion: from stochastic processes to chaos and beyond.Chaos. 2005 Jun;15(2):26102. doi: 10.1063/1.1832773. Chaos. 2005. PMID: 16035904 Review.
-
Noise in biological circuits.Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2009 Mar-Apr;1(2):214-25. doi: 10.1002/wnan.22. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2009. PMID: 20049792 Review.
Cited by
-
Noise and information transmission in promoters with multiple internal States.Biophys J. 2014 Mar 4;106(5):1194-204. doi: 10.1016/j.bpj.2014.01.014. Biophys J. 2014. PMID: 24606943 Free PMC article.
-
How input noise limits biochemical sensing in ultrasensitive systems.Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Sep;90(3):032702. doi: 10.1103/PhysRevE.90.032702. Epub 2014 Sep 5. Phys Rev E Stat Nonlin Soft Matter Phys. 2014. PMID: 25314468 Free PMC article.
-
Interpretable and tractable models of transcriptional noise for the rational design of single-molecule quantification experiments.Nat Commun. 2022 Dec 9;13(1):7620. doi: 10.1038/s41467-022-34857-7. Nat Commun. 2022. PMID: 36494337 Free PMC article.
-
Coordinated switching of bacterial flagellar motors: evidence for direct motor-motor coupling?Phys Rev Lett. 2013 Apr 12;110(15):158703. doi: 10.1103/PhysRevLett.110.158703. Epub 2013 Apr 9. Phys Rev Lett. 2013. PMID: 25167320 Free PMC article.
References
-
- Rao CV, Wolf DM, Arkin A. Nature (London) 2002;420:231. - PubMed
-
- Elowitz MB, Levine AJ, Siggia ED, Swain PD. Science. 2002;207:1183. - PubMed
-
- Blake WJ, Kærn M, Cantor CR, Collins JJ. Nature (London) 2003;422:633. - PubMed
-
- Kærn M, Elston TC, Blake WJ, Collins JJ. Nat Rev Genetics. 2005;6:451. - PubMed
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources