Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1990 May;258(5 Pt 2):F1203-10.
doi: 10.1152/ajprenal.1990.258.5.F1203.

Transport characteristics of renal brush border Na(+)- and K(+)-dependent uridine carriers

Affiliations

Transport characteristics of renal brush border Na(+)- and K(+)-dependent uridine carriers

C W Lee et al. Am J Physiol. 1990 May.

Abstract

The uptake of uridine into rat renal brush-border membrane vesicles is mediated by Na(+)- and K(+)-dependent concentrative transport processes. At a 100 mM extravesicular cation concentration the apparent Km values were 9.7 +/- 4.2 and 28 +/- 5 microM, and Vmax values were 28 +/- 4 and 7 +/- 1 pmol.mg protein-1.s-1 for the Na(+)- and K(+)-dependent systems, respectively. Uracil, D-ribose, and D-glucose failed to inhibit the uptake processes, indicating that these carriers are specific for nucleosides. Other purines and pyrimidines inhibited uridine uptake competitively, although these two transport systems seem to favor adenosine and pyrimidines as permeants. Evidence is also given that transport is rheogenic, involving a net transfer of positive charge. The Na+:uridine and K+:uridine coupling stoichiometry was found to be 1:1 and 3:2, respectively. Both systems can also be driven by an anion gradient with apparent NO3- affinity (KNO3-) values of 42 +/- 13 and 163 +/- 54 mM for Na(+)- and K(+)-dependent systems, respectively.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources