Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013;8(1):e54703.
doi: 10.1371/journal.pone.0054703. Epub 2013 Jan 23.

Bacterial diversity in two Neonatal Intensive Care Units (NICUs)

Affiliations

Bacterial diversity in two Neonatal Intensive Care Units (NICUs)

Krissi M Hewitt et al. PLoS One. 2013.

Abstract

Infants in Neonatal Intensive Care Units (NICUs) are particularly susceptible to opportunistic infection. Infected infants have high mortality rates, and survivors often suffer life-long neurological disorders. The causes of many NICU infections go undiagnosed, and there is debate as to the importance of inanimate hospital environments (IHEs) in the spread of infections. We used culture-independent next-generation sequencing to survey bacterial diversity in two San Diego NICUs and to track the sources of microbes in these environments. Thirty IHE samples were collected from two Level-Three NICU facilities. We extracted DNA from these samples and amplified the bacterial small subunit (16S) ribosomal RNA gene sequence using 'universal' barcoded primers. The purified PCR products were pooled into a single reaction for pyrosequencing, and the data were analyzed using QIIME. On average, we detected 93+/-39 (mean +/- standard deviation) bacterial genera per sample in NICU IHEs. Many of the bacterial genera included known opportunistic pathogens, and many were skin-associated (e.g., Propionibacterium). In one NICU, we also detected fecal coliform bacteria (Enterobacteriales) in a high proportion of the surface samples. Comparison of these NICU-derived sequences to previously published high-throughput 16S rRNA amplicon studies of other indoor environments (offices, restrooms and healthcare facilities), as well as human- and soil-associated environments, found the majority of the NICU samples to be similar to typical building surface and air samples, with the notable exception of the IHEs which were dominated by Enterobacteriaceae. Our findings provide evidence that NICU IHEs harbor a high diversity of human-associated bacteria and demonstrate the potential utility of molecular methods for identifying and tracking bacterial diversity in NICUs.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: A few of the samples the authors collected in this study were used as sequence test datasets for the published SourceTracker software. The data were used to test the viability, accuracy and reproducibility of the SourceTracker method and were not discussed any further in that paper. This does not alter the authors' adherence to all the PLOS ONE policies on sharing data and materials.

Figures

Figure 1
Figure 1. PCoA analysis of NICU samples and previously published indoor studies.
PCoA of pair-wise weighted UniFrac distances (see Methods) both with biplots that include taxonomy (A), and without biplots (B). The different colored points indicate the various indoor sampling environments Most of the NICU samples cluster with other indoor surface samples, except for nine NICU1 samples in the top left which cluster with a single office surface sample. Order-level taxonomy illustrates that the presence of Enterobacteriales contributes to the distinct clustering of these samples.
Figure 2
Figure 2. Likely sources of microbes in the two NICUs.
SitePainter images display the results from SourceTracker. The NICU sites are colored on a heatmap scale, where blue indicates that low similarity between a sink and a source and red indicates high similarity between a sink and a source Many surfaces have microbial compositions that are not similar to any of the sources (represented by Unknown), while the handles of the drawers, door and faucet, and the keyboard of the incubator, resemble the communities of human skin.

Similar articles

Cited by

References

    1. Couto RC, Carvalho EA, Pedrosa TM, Pedroso ER, Neto MC, et al. (2007) A 10-year prospective surveillance of nosocomial infections in neonatal intensive care units. Am J Infect Control 35: 183–189. - PubMed
    1. Stover BH, Shulman ST, Bratcher DF, Brady MT, Levine GL, et al. (2001) Nosocomial infection rates in US children's hospitals' neonatal and pediatric intensive care units. Am J Infect Control 29: 152–157. - PubMed
    1. Urrea M, Iriondo M, Thio M, Krauel X, Serra M, et al. (2003) A prospective incidence study of nosocomial infections in a neonatal care unit. Am J Infect Control 31: 505–507. - PubMed
    1. Stoll BJ, Hansen NI, Adams-Chapman I, Fanaroff AA, Hintz SR, et al. (2004) Neurodevelopmental and growth impairment among extremely low-birth-weight infants with neonatal infection. Jama 292: 2357–2365. - PubMed
    1. Amann RI, Ludwig W, Schleifer KH (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59: 143–169. - PMC - PubMed

Publication types

MeSH terms