Common variation neighbouring micro-RNA 22 is associated with increased left ventricular mass
- PMID: 23372812
 - PMCID: PMC3555935
 - DOI: 10.1371/journal.pone.0055061
 
Common variation neighbouring micro-RNA 22 is associated with increased left ventricular mass
Abstract
Aims: Previous genome-wide linkage analysis has suggested that chromosomal region 17p13.3 may harbour genes influencing left ventricular mass (LVM) in man. To date, the genetic factors accounting for LVM variability remain largely unknown but a non-coding RNA gene within this region, micro-RNA 22 (miR-22), has been implicated in cardiac hypertrophy and heart failure in animal models. We thus investigated the relationship between common genetic polymorphisms surrounding miR-22 and left ventricular mass in a family-based association study.
Methods and results: We studied a cohort of 255 families comprising 1,425 individuals ascertained via a hypertensive proband. Ten single nucleotide polymorphisms which together tagged common genetic variation surrounding the miR-22 gene were genotyped. There was evidence of association between the rs7223247 polymorphism, which lies within the 3'UTR of a gene of unknown function, TLCD2, immediately downstream from miR-22, and left ventricular mass determined by Sokolow-Lyon voltage (Bonferroni corrected p-value = 0.038). The T allele at rs7223247 was associated with an 0.272 standard deviation higher Sokolow-Lyon voltage. Genotype was responsible for ~1% of the population variability in LVM.
Conclusions: Genotype at the rs7223247 polymorphism affects left ventricular mass determined by Sokolow-Lyon voltage. The neighbouring genes miR-22 and TLCD2 are strong candidates to account for this observation.
Conflict of interest statement
Figures
              
              
              
              
                
                
                References
- 
    
- Mayosi BM, Keavney B, Kardos A, Davies CH, Ratcliffe PJ, et al. (2002) Electrocardiographic measures of left ventricular hypertrophy show greater heritability than echocardiographic left ventricular mass. Eur Heart J 23: 1963–1971. - PubMed
 
 - 
    
- Levy D, Salomon M, D’Agostino RB, Belanger AJ, Kannel WB (1994) Prognostic implications of baseline electrocardiographic features and their serial changes in subjects with left ventricular hypertrophy. Circulation 90: 1786–1793. - PubMed
 
 - 
    
- Mayosi BM, Avery PJ, Farrall M, Keavney B, Watkins H (2008) Genome-wide linkage analysis of electrocardiographic and echocardiographic left ventricular hypertrophy in families with hypertension. Eur Heart J 29: 525–530. - PubMed
 
 - 
    
- Da Costa Martins PA, De Windt LJ (2012) MicroRNAs in control of cardiac hypertrophy. Cardiovasc Res 93: 563–572. - PubMed
 
 
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
