Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2012 Nov;32(5-6):281-5.

[Activated microglial cells trigger neurogenesis following neuronal loss in the dentate gyrus of adult mice]

[Article in Japanese]
Affiliations
  • PMID: 23373316
Review

[Activated microglial cells trigger neurogenesis following neuronal loss in the dentate gyrus of adult mice]

[Article in Japanese]
Kiyokazu Ogita et al. Nihon Shinkei Seishin Yakurigaku Zasshi. 2012 Nov.

Abstract

Neurological injuries are widely known to promote neurogenesis in the adult hippocampal dentate gyrus. Our previous studies demonstrated that the granule cells in the hippocampal dentate gyrus are injured and eradicated by treatment with trimethyltin (TMT), with being regenerated in the dentate granule cell layer (GCL) after neuronal loss. Recent collective reports indicate that during brain injury and in neurodegenerative disorders, neurogenesis is controlled by cytokines, chemokines, neurotransmitters, and reactive oxygen/nitrogen species, which are released by dying neurons as well as by activated macrophages, micro-glia, and astrocytes. To elucidate the role of activated microglia in the neuroregeneration following the dentate granule cell loss, in this study, we evaluated the involvement of activated microglial cells and a related factor in the generation of newly-generated cells of the hippocampal dentate gyrus following neuronal loss induced by TMT. Our results support the possibility that pro-inflammatory cytokines released from activated microglial cells may be involved in promotion of the neurogenesis mechanism through activation of the NF-kappaB signaling pathway following the dentate neuronal loss induced by TMT treatment.

PubMed Disclaimer

Similar articles

Cited by