Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Mar 20;135(11):4235-49.
doi: 10.1021/ja307077f. Epub 2013 Mar 7.

Mechanistic insights on the ortho-hydroxylation of aromatic compounds by non-heme iron complex: a computational case study on the comparative oxidative ability of ferric-hydroperoxo and high-valent Fe(IV)═O and Fe(V)═O intermediates

Affiliations

Mechanistic insights on the ortho-hydroxylation of aromatic compounds by non-heme iron complex: a computational case study on the comparative oxidative ability of ferric-hydroperoxo and high-valent Fe(IV)═O and Fe(V)═O intermediates

Azaj Ansari et al. J Am Chem Soc. .

Abstract

ortho-Hydroxylation of aromatic compounds by non-heme Fe complexes has been extensively studied in recent years by several research groups. The nature of the proposed oxidant varies from Fe(III)-OOH to high-valent Fe(IV)═O and Fe(V)═O species, and no definitive consensus has emerged. In this comprehensive study, we have investigated the ortho-hydroxylation of aromatic compounds by an iron complex using hybrid density functional theory incorporating dispersion effects. Three different oxidants, Fe(III)-OOH, Fe(IV)═O, and Fe(V)═O, and two different pathways, H-abstraction and electrophilic attack, have been considered to test the oxidative ability of different oxidants and to underpin the exact mechanism of this regiospecific reaction. By mapping the potential energy surface of each oxidant, our calculations categorize Fe(III)-OOH as a sluggish oxidant, as both proximal and distal oxygen atoms of this species have prohibitively high barriers to carry out the aromatic hydroxylation. This is in agreement to the experimental observation where Fe(III)-OOH is found not to directly attack the aromatic ring. A novel mechanism for the explicit generation of non-heme Fe(IV)═O and Fe(V)═O from isomeric forms of Fe(III)-OOH has been proposed where the O···O bond is found to cleave via homolytic (Fe(IV)═O) or heterolytic (Fe(V)═O) fashion exclusively. Apart from having favorable formation energies, the Fe(V)═O species also has a lower barrier height compared to the corresponding Fe(IV)═O species for the aromatic ortho-hydroxylation reaction. The transient Fe(V)═O prefers electrophilic attack on the benzene ring rather than the usual aromatic C-H activation step. A large thermodynamic drive for the formation of a radical intermediate is encountered in the mechanistic scene, and this intermediate substantially diminishes the energy barrier required for C-H activation by the Fe(V)═O species. Further spin density distribution and the frontier orbitals of the computed species suggest that the Fe(IV)═O species has a substantial barrier height for this reaction, as the substrate is coordinated to the metal atoms. This coordination restricts the C-H activation step by Fe(IV)═O species to proceed via the π-type pathway, and thus the usual energy lowering due to the low-lying quintet state is not observed here.

PubMed Disclaimer

Publication types

LinkOut - more resources