Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2013:774:149-67.
doi: 10.1007/978-94-007-5590-1_9.

Modeling microRNA-transcription factor networks in cancer

Affiliations
Review

Modeling microRNA-transcription factor networks in cancer

Baltazar D Aguda. Adv Exp Med Biol. 2013.

Abstract

An increasing number of transcription factors (TFs) and microRNAs (miRNAs) is known to form feedback loops (FBLs) of interactions where a TF positively or negatively regulates the expression of a miRNA, and the miRNA suppresses the translation of the TF messenger RNA. FBLs are potential sources of instability in a gene regulatory network. Positive FBLs can give rise to switching behaviors while negative FBLs can generate periodic oscillations. This chapter presents documented examples of FBLs and their relevance to stem cell renewal and differentiation in gliomas. Feed-forward loops (FFLs) are only discussed briefly because they do not affect network stability unless they are members of cycles. A primer on qualitative network stability analysis is given and then used to demonstrate the network destabilizing role of FBLs. Steps in model formulation and computer simulations are illustrated using the miR-17-92/Myc/E2F network as an example. This example possesses both negative and positive FBLs.

PubMed Disclaimer

LinkOut - more resources