Implications of lipid moiety in oligomerization and immunoreactivities of GPI-anchored proteins
- PMID: 23378600
- PMCID: PMC3605984
- DOI: 10.1194/jlr.M034421
Implications of lipid moiety in oligomerization and immunoreactivities of GPI-anchored proteins
Abstract
Glycosylphosphatidylinositol (GPI) enriches GPI-anchored proteins (GPI-AP) in lipid rafts by intimate interaction of its lipid moiety with sphingolipids and cholesterol. In addition to such lipid-lipid interactions, it has been reported that GPI may interact with protein moiety linked to GPI and affect protein conformations because GPI delipidation reduced immunoreactivities of protein. Here, we report that GPI-APs that have not undergone fatty acid remodeling exhibit reduced immunoreactivities in Western blotting, similar to delipidated proteins, compared with normal remodeled GPI-APs. In contrast, immunostaining in flow cytometry and immunoprecipitation did not show significant differences between remodeled and unremodeled GPI-APs. Moreover, detection with premixed primary/secondary antibody complexes or Fab fragments eliminated this difference in Western blotting. These results indicate that normally remodeled GPI enhanced oligomerization of GPI-APs and that inefficient oligomerization of unremodeled GPI-APs was responsible for reduced immunoreactivities. Moreover, the reduction in immunoreactivities of delipidated GPI-APs was most likely caused by the same effect. Finally, by chemical cross-linking of surface proteins in living cells and cell killing assay using a pore-forming bacterial toxin, we showed that enhanced oligomerization by GPI-remodeling occurs under a physiological membrane environment. Thus, this study clarifies the significance of GPI fatty acid remodeling in oligomerization of GPI-APs and provides useful information for technical studies of these cell components.
Figures
References
-
- Orlean P., Menon A. K. 2007. Thematic review series: lipid posttranslational modifications. GPI anchoring of protein in yeast and mammalian cells, or: how we learned to stop worrying and love glycophospholipids. J. Lipid Res. 48: 993–1011. - PubMed
-
- Tanaka S., Maeda Y., Tashima Y., Kinoshita T. 2004. Inositol deacylation of glycosylphosphatidylinositol-anchored proteins is mediated by mammalian PGAP1 and yeast Bst1p. J. Biol. Chem. 279: 14256–14263. - PubMed
-
- Fujita M., Maeda Y., Ra M., Yamaguchi Y., Taguchi R., Kinoshita T. 2009. GPI glycan remodeling by PGAP5 regulates transport of GPI-anchored proteins from the ER to the Golgi. Cell. 139: 352–365. - PubMed
-
- Ueda Y., Yamaguchi R., Ikawa M., Okabe M., Morii E., Maeda Y., Kinoshita T. 2007. PGAP1 knock-out mice show otocephaly and male infertility. J. Biol. Chem. 282: 30373–30380. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous
