Relationship between essential fatty acid requirements of aquatic animals and the capacity for bioconversion of linolenic acid to highly unsaturated fatty acids
- PMID: 233802
- DOI: 10.1016/0305-0491(79)90251-7
Relationship between essential fatty acid requirements of aquatic animals and the capacity for bioconversion of linolenic acid to highly unsaturated fatty acids
Abstract
1. [1-14C]linolenic acid was injected into the rainbow trout, Salmo gairdnerii, ayu, Plecoglossus altivelis, eel, Anguilla japonica, red sea bream, Chrysophrys major, rockfish, Sebastiscus marmoratus, globefish, Fugu rubripes rubripes and prawn, Penaeus japonicus (molting stage D"1-D2), and the bioconversion of linolenic acid (18:3 omega 3) to highly unsaturated fatty acids such as eicosapentaenoic (20:5 omega 3) and docosahexaenoic (22:6 omega 3) acids was investigated. 2. Linolenic acid was converted to 20:5 omega 3 and 22:6 omega 3 intensively in the rainbow trout, moderately in the ayu, eel and prawn, but slightly in the red sea bream, rockfish and globefish. 3. These results were discussed in relation to the essential fatty acid requirements of the aquatic animals.
Similar articles
-
Desaturation and chain elongation of essential fatty acids in isolated liver cells from rat and rainbow trout.Lipids. 1986 Mar;21(3):202-5. doi: 10.1007/BF02534822. Lipids. 1986. PMID: 2871473
-
Elongation and desaturation of dietary fatty acids in turbot Scophtalmus maximus L., and rainbow trout, Salmo gairdnerii rich.Lipids. 1975 Sep;10(9):528-31. doi: 10.1007/BF02532354. Lipids. 1975. PMID: 1177666
-
Role of the blood-brain barrier in the formation of long-chain omega-3 and omega-6 fatty acids from essential fatty acid precursors.J Neurochem. 1990 Aug;55(2):391-402. doi: 10.1111/j.1471-4159.1990.tb04150.x. J Neurochem. 1990. PMID: 2115069
-
Linolenic acid deficiency.Lipids. 1979 Feb;14(2):166-73. doi: 10.1007/BF02533868. Lipids. 1979. PMID: 370483 Review.
-
Essential fatty acid metabolism and requirements for LBW infants.Acta Paediatr Suppl. 1994 Dec;405:78-85. doi: 10.1111/j.1651-2227.1994.tb13403.x. Acta Paediatr Suppl. 1994. PMID: 7734797 Review.
Cited by
-
Biosynthesis of eicosapentaenoic acid in the sea urchin Psammechinus miliaris.Lipids. 2001 Jan;36(1):79-82. doi: 10.1007/s11745-001-0671-2. Lipids. 2001. PMID: 11214734
-
Effects of dietary lipid and environmental salinity on growth, body composition, and cold tolerance of juvenile red drum (Sciaenops ocellatus).Fish Physiol Biochem. 1995 Feb;14(1):49-61. doi: 10.1007/BF00004290. Fish Physiol Biochem. 1995. PMID: 24197271
-
Preferential oxidation of linolenic acid compared to linoleic acid in the liver of catfish (Heteropneustes fossilis and Clarias batrachus).Lipids. 1982 Oct;17(10):733-40. doi: 10.1007/BF02534660. Lipids. 1982. PMID: 6294434
-
Omega-3 fatty acids upregulate adult neurogenesis.Neurosci Lett. 2007 Mar 26;415(2):154-8. doi: 10.1016/j.neulet.2007.01.010. Epub 2007 Jan 7. Neurosci Lett. 2007. PMID: 17240063 Free PMC article.
-
Effects of different dietary phospholipid levels on growth performance, fatty acid composition, PPAR gene expressions and antioxidant responses of blunt snout bream Megalobrama amblycephala fingerlings.Fish Physiol Biochem. 2015 Apr;41(2):423-36. doi: 10.1007/s10695-014-9994-8. Epub 2014 Sep 27. Fish Physiol Biochem. 2015. PMID: 25261016