Acaricide, fungicide and drug interactions in honey bees (Apis mellifera)
- PMID: 23382869
- PMCID: PMC3558502
- DOI: 10.1371/journal.pone.0054092
Acaricide, fungicide and drug interactions in honey bees (Apis mellifera)
Abstract
Background: Chemical analysis shows that honey bees (Apis mellifera) and hive products contain many pesticides derived from various sources. The most abundant pesticides are acaricides applied by beekeepers to control Varroa destructor. Beekeepers also apply antimicrobial drugs to control bacterial and microsporidial diseases. Fungicides may enter the hive when applied to nearby flowering crops. Acaricides, antimicrobial drugs and fungicides are not highly toxic to bees alone, but in combination there is potential for heightened toxicity due to interactive effects.
Methodology/principal findings: Laboratory bioassays based on mortality rates in adult worker bees demonstrated interactive effects among acaricides, as well as between acaricides and antimicrobial drugs and between acaricides and fungicides. Toxicity of the acaricide tau-fluvalinate increased in combination with other acaricides and most other compounds tested (15 of 17) while amitraz toxicity was mostly unchanged (1 of 15). The sterol biosynthesis inhibiting (SBI) fungicide prochloraz elevated the toxicity of the acaricides tau-fluvalinate, coumaphos and fenpyroximate, likely through inhibition of detoxicative cytochrome P450 monooxygenase activity. Four other SBI fungicides increased the toxicity of tau-fluvalinate in a dose-dependent manner, although possible evidence of P450 induction was observed at the lowest fungicide doses. Non-transitive interactions between some acaricides were observed. Sublethal amitraz pre-treatment increased the toxicity of the three P450-detoxified acaricides, but amitraz toxicity was not changed by sublethal treatment with the same three acaricides. A two-fold change in the toxicity of tau-fluvalinate was observed between years, suggesting a possible change in the genetic composition of the bees tested.
Conclusions/significance: Interactions with acaricides in honey bees are similar to drug interactions in other animals in that P450-mediated detoxication appears to play an important role. Evidence of non-transivity, year-to-year variation and induction of detoxication enzymes indicates that pesticide interactions in bees may be as complex as drug interactions in mammals.
Conflict of interest statement
Figures




References
-
- Bogdanov S (2006) Contaminants of bee products. Apidologie 37: 1–18 doi:10.1051/apido:2005043. - DOI
-
- Chauzat MP, Faucon JP (2007) Pesticide residues in beeswax samples collected from honey bee colonies (Apis mellifera L.) in France. Pest Manag Sci 63: 1100–1106 doi:10.1002/ps.1451. - DOI - PubMed
-
- Mullin CA, Frazier M, Frazier JL, Ashcraft S, Simonds R, et al. (2010) High levels of miticides and agrochemicals in North American apiaries: implications for honey bee health. PLoS ONE 5: e9754 doi:10.1371/journal.pone.0009754. - DOI - PMC - PubMed
-
- Rosenkranz P, Aumeier P, Ziegelmann B (2010) Biology and control of Varroa destructor . J Invertebr Pathol 103: S96–S119 doi:10.1016/j.jip.2009.07.016. - DOI - PubMed
-
- Le Conte Y, Ellis MD, Ritter W (2010) Varroa mites and honey bee health: can Varroa explain part of the colony losses? Apidologie 41: 353–363 doi:10.1051/apido/2010017. - DOI
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources