Slow protein fluctuations explain the emergence of growth phenotypes and persistence in clonal bacterial populations
- PMID: 23382887
- PMCID: PMC3558523
- DOI: 10.1371/journal.pone.0054272
Slow protein fluctuations explain the emergence of growth phenotypes and persistence in clonal bacterial populations
Abstract
One of the most challenging problems in microbiology is to understand how a small fraction of microbes that resists killing by antibiotics can emerge in a population of genetically identical cells, the phenomenon known as persistence or drug tolerance. Its characteristic signature is the biphasic kill curve, whereby microbes exposed to a bactericidal agent are initially killed very rapidly but then much more slowly. Here we relate this problem to the more general problem of understanding the emergence of distinct growth phenotypes in clonal populations. We address the problem mathematically by adopting the framework of the phenomenon of so-called weak ergodicity breaking, well known in dynamical physical systems, which we extend to the biological context. We show analytically and by direct stochastic simulations that distinct growth phenotypes can emerge as a consequence of slow-down of stochastic fluctuations in the expression of a gene controlling growth rate. In the regime of fast gene transcription, the system is ergodic, the growth rate distribution is unimodal, and accounts for one phenotype only. In contrast, at slow transcription and fast translation, weakly non-ergodic components emerge, the population distribution of growth rates becomes bimodal, and two distinct growth phenotypes are identified. When coupled to the well-established growth rate dependence of antibiotic killing, this model describes the observed fast and slow killing phases, and reproduces much of the phenomenology of bacterial persistence. The model has major implications for efforts to develop control strategies for persistent infections.
Conflict of interest statement
Figures
and
43.2 nM. Panel (b) shows different parameter sets characterizing the weakly non-ergodic regime. Parameter sets for the simulation were: (Red) k1 = 2.0⋅10−7, k2 = 1.0, γ1 = 0.01, γ2 = 4⋅10−5 (all units in sec−1), T0 = 2100 (sec), κ = 1.0 (nM) −1, V0 = 1.7 fl, k0 = 5; (Blue) k1 = 1.0⋅10−6, k2 = 1.0, γ1 = 0.01, γ2 = 4⋅10−5 (all units in sec−1), T0 = 2100 (sec), κ = 1.0 (nM) −1, V0 = 1.7 fl, k0 = 5; (Black) k1 = 1.0⋅10−6, k2 = 10.0, γ1 = 0.01, γ2 = 4⋅10−5 (all units in sec−1), T0 = 2100 (sec), κ = 1.0 (nM) −1, V0 = 1.7 fl, k0 = 5. The values for the mean number of bursts a, and for the mean burst size b were fitted from the corresponding protein distribution and used to evaluate the static disorder approximation (16), indicated with dashed lines. The corresponding values of a and b are reported in the legend box for ease of reading. Notice the regularly spaced jolts, more apparent during the fast killing phase, corresponding to the majority of cells dividing at regular intervals T0. The biphasic behaviour of the killing curve depends qualitatively on both a and b. The lower the mean number of bursts a, the longer the initial killing phase, and the smaller the persister population, while the larger the mean burst size b, the flatter the persister tail. In general, within the present model persistence requires small a’s and large b’s.
is positive.
and
(blue curve). Parameters were
litres,
= 0.01 (nM) −1,
(sec−1), and the protein copy number was rescaled to
with
(Avogadro number). The dashed red line represents the slope associated with the exponential asymptotic growth law
, shown for comparison. The shift between the two curves is due to the arbitrary prefactor in front of the exponential. The Lambert function introduces a deviation from exponential volume growth at short times.References
-
- Dhar N, McKinney JD (2007) Microbial phenotypic heterogeneity and antibiotic tolerance. Curr Opin Microbiol 10: 30–38. - PubMed
-
- Brock A, Chang H, Huang S (2009) Non-genetic heterogeneity–a mutation-independent driving force for the somatic evolution of tumours. Nat Rev Genet 10: 336–342. nrg2556 [pii];10.1038/nrg2556 [doi]. - PubMed
-
- Trott J, Hayashi K, Surani A, Babu MM, Martinez-Arias A (2012) Dissecting ensemble networks in ES cell populations reveals micro-heterogeneity underlying pluripotency. Molecular Biosystems 8: 744–752. - PubMed
-
- Rosenfeld N, Young JW, Alon U, Swain PS, Elowitz MB (2005) Gene regulation at the single-cell level. Science 307: 1962–1965. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
