Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Jun;91(11):1604-11.
doi: 10.1016/j.chemosphere.2012.12.055. Epub 2013 Feb 4.

Visible light photocatalytic activity of Fe(3+)-doped ZnO nanoparticle prepared via sol-gel technique

Affiliations

Visible light photocatalytic activity of Fe(3+)-doped ZnO nanoparticle prepared via sol-gel technique

Muneer M Ba-Abbad et al. Chemosphere. 2013 Jun.

Abstract

The optical properties of a ZnO photocatalyst were enhanced with various dopant concentrations of Fe(3+). Doped ZnO nanoparticles were synthesized via a sol-gel method without the use of capping agents or surfactants and was then characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and ultraviolet-visible (UV-Vis) spectroscopy. The results showed that ZnO has a wurtzite, hexagonal structure and that the Fe(3+) ions were well incorporated into the ZnO crystal lattice. As the Fe(3+) concentration increased from 0.25 wt.% to 1 wt.%, the crystal size decreased in comparison with the undoped ZnO. The spectral absorption shifts of the visible light region (red shift) and the band gap decreases for each Fe-ZnO sample were investigated. The photocatalytic activities of the ZnO and Fe-ZnO samples were evaluated based on the degradation of 2-chlorophenol in aqueous solution under solar radiation. The samples with a small concentration of Fe(3+) ions showed enhanced photocatalytic activity with an optimal maximum performance at 0.5 wt.%. The results indicated that toxicity removal of 2-chlorophenol at same line of degradation efficiency. Small crystallite size and low band gap were attributed to high activities of Fe-ZnO samples under various concentrations of Fe(3+) ions compared to undoped ZnO.

PubMed Disclaimer

Publication types