Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Jan 14;21(1):822-33.
doi: 10.1364/OE.21.000822.

Two-photon excited fluorescence in the LYB:Eu monoclinic crystal: towards a new scheme of single-beam dual-voxel direct laser writing in crystals

Affiliations
Free article

Two-photon excited fluorescence in the LYB:Eu monoclinic crystal: towards a new scheme of single-beam dual-voxel direct laser writing in crystals

Y Petit et al. Opt Express. .
Free article

Abstract

We report on two-photon excited fluorescence in the oriented Eu(3+)doped LYB monoclinic crystal under femtosecond laser tight focusing. Due to spatial walk-off, the two polarization modes of the incident femtosecond beam simultaneously provide the independent excitation of two distinct focuses, leading to a single-beam dual-voxel nonlinear excitation of fluorescence below material modification threshold. These observations emphasize on the anisotropy of both two-photon absorption as well as fluorescence emission. They demonstrate the localized control of the nonlinear energy deposit, thanks to the adjustment of both the input power and polarization, by properly balancing the injected energy in each voxel. Such approach should be considered for future direct laser writing of waveguides in propagation directions out of the dielectric axes, so as to optimally cope with the highly probable anisotropy of laser-induced material modification thresholds in these crystals. These results open new ways for further potential developments in direct laser writing as the simultaneous inscription of double-line structures for original waveguides processes.

PubMed Disclaimer

Publication types

LinkOut - more resources