Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1990 Mar;7(3):222-9.
doi: 10.1023/a:1015809725688.

Transport mechanisms in iontophoresis. III. An experimental study of the contributions of electroosmotic flow and permeability change in transport of low and high molecular weight solutes

Affiliations

Transport mechanisms in iontophoresis. III. An experimental study of the contributions of electroosmotic flow and permeability change in transport of low and high molecular weight solutes

M J Pikal et al. Pharm Res. 1990 Mar.

Abstract

The objective of this research was to provide in vitro transport data designed to clarify the relative importance of permeability increase and electroosmotic flow in flux enhancement via iontophoresis. Iontophoretic fluxes were measured with both anode and cathode donor cells, and passive fluxes were measured both before iontophoresis (Passive 1) and after iontophoresis (Passive 2). Data were generated for three uncharged low molecular weight solutes (glycine, glucose, and tyrosine) and two high molecular weight anionic species (carboxy inulin and bovine serum albumin). Flux enhancement is greater for anodic delivery than for cathodic delivery, even for the negatively charged molecules, and anodic flux of glucose decreases as the concentration of NaCl increases. Both observations are consistent with a mass transfer mechanism strongly dependent on electroosmotic flow. Steady-state anodic flux at 0.32 mA/cm2, expressed as equivalent donor solution flux (in microliters/hr cm2), ranged from 6.1 for glycine to about 2 for the large anions. As expected, iontophoretic flux is higher at 3.2 mA/cm2 than at 0.32 mA/cm2, and passive flux measured after iontophoresis is about a factor of 10 greater than the corresponding flux measured before the skin was exposed to electric current. There are two mechanisms for flux enhancement relative to passive flux on "fresh" hairless mouse skin: (1) the effect of the voltage in increasing mass transfer over the passive diffusion level, the effect of electroosmotic flow dominating this contribution in the systems studied in this report; and (2) the effect of prior current flow in increasing the "intrinsic permeability" of the skin.(ABSTRACT TRUNCATED AT 250 WORDS)

PubMed Disclaimer

References

    1. J Pharmacol Exp Ther. 1980 Mar;212(3):377-81 - PubMed
    1. Pharm Res. 1990 Mar;7(3):213-21 - PubMed
    1. J Pharm Sci. 1988 Jun;77(6):492-7 - PubMed
    1. Life Sci II. 1971 Jul 22;10 (14 ):803-11 - PubMed
    1. J Phys Chem. 1971 Feb 4;75(3):379-87 - PubMed

LinkOut - more resources