Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2013 Feb;8(2):287-98.
doi: 10.2217/nnm.12.211.

Bacterial cellulose scaffolds and cellulose nanowhiskers for tissue engineering

Affiliations
Review

Bacterial cellulose scaffolds and cellulose nanowhiskers for tissue engineering

James M Dugan et al. Nanomedicine (Lond). 2013 Feb.

Abstract

As the principle structural polysaccharide in plants, cellulose has been extensively characterized over many decades. In recent years, however, exciting new cellulosic materials have been developed with nanoscale fibrillar structures that have particularly promising applications in the growing field of tissue engineering. The majority of recent studies on cellulose nanomaterials for tissue engineering have employed bacterial cellulose, a material with a profile of properties unique among biomaterials commonly used in tissue engineering scaffolds. In addition, a number of recent studies have explored the biomedical applications of discrete colloidal nanocellulose fibrils known as cellulose nanowhiskers or cellulose nanocrystals. The literature on bacterial cellulose scaffolds for tissue engineering is reviewed, and studies on the biocompatibility of cellulose nanowhiskers and their potential for tissue engineering are discussed. Challenges for future development of these materials and potential future advances are also considered.

PubMed Disclaimer

Publication types

MeSH terms