Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Oct;54(10):2263-8.
doi: 10.3109/10428194.2013.775437. Epub 2013 Mar 13.

Natural Bcl-2 inhibitor (-)- gossypol induces protective autophagy via reactive oxygen species-high mobility group box 1 pathway in Burkitt lymphoma

Affiliations

Natural Bcl-2 inhibitor (-)- gossypol induces protective autophagy via reactive oxygen species-high mobility group box 1 pathway in Burkitt lymphoma

Zhenhong Ni et al. Leuk Lymphoma. 2013 Oct.

Abstract

(-)- Gossypol, a natural inhibitor of anti-apoptotic Bcl-2 proteins, has presented an effective anti-tumor activity in numerous preclinical trials. More and more evidence in vivo and in vitro validates that (-)- gossypol can dramatically suppress cell proliferation and induce cell death in hematological malignancies. However, the detailed mechanisms are not well known. In the present study, we showed that treatment with (-)- gossypol stimulated reactive oxygen species (ROS) generation and induced autophagy in Burkitt lymphoma cells. Antioxidant N-acetyl-cysteine (NAC) pretreatment attenuated (-)- gossypol-induced autophagy. Furthermore, (-)- gossypol treatment increased the translocation of high mobility group box 1 (HMGB1) from nuclei to cytoplasm, which can be suppressed by NAC pretreatment. NAC pretreatment also dramatically enhanced (-)- gossypol-induced apoptosis and total cell death. These results indicate that (-)- gossypol induces a protective autophagy in Burkitt lymphoma cells, partly due to ROS induction and cytosolic translocation of HMGB1. Antioxidants may serve as potent chemosensitizers to enhance cell death through blocking (-)- gossypol-induced autophagy.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources