Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1990 Jan 30;29(4):950-5.
doi: 10.1021/bi00456a015.

Ligand-dependent quenching of tryptophan fluorescence in human erythrocyte hexose transport protein

Affiliations

Ligand-dependent quenching of tryptophan fluorescence in human erythrocyte hexose transport protein

A B Pawagi et al. Biochemistry. .

Abstract

D-Glucose transport by the 492-residue human erythrocyte hexose transport protein may involve ligand-mediated conformational/positional changes. To examine this possibility, hydrophilic quencher molecules [potassium iodide and acrylamide (ACR)] were used to monitor the quenching of the total protein intrinsic fluorescence exhibited by the six protein tryptophan (Trp) residues in the presence and absence of substrate D-glucose, and in the presence of the inhibitors maltose and cytochalasin B. Protein fluorescence was found to be quenched under various conditions, ca. 14-24% by KI and ca. 25-33% by ACR, indicating that the bulk of the Trp residue population occurs in normally inaccessible hydrophobic regions of the erythrocyte membrane. However, in the presence of D-glucose, quenching by KI and ACR decreased an average of -3.4% and -4.4%, respectively; Stern-Volmer plots displayed decreased slopes in the presence of D-glucose, confirming the relatively reduced quenching. In contrast, quenching efficiency increased in the presence of maltose (+5.9%, +3.3%), while addition of cytochalasin B had no effect on fluorescence quenching. The overall results are interpreted in terms of ligand-activated movement of an initially aqueous-located protein segment containing a Trp residue into, or toward, the cellular membrane. Relocation of this segment, in effect, opens the D-glucose channel; maltose and cytochalasin B would thus inhibit transport by mechanisms which block this positional change. Conformational and hydropathy analyses suggested that the region surrounding Trp-388 is an optimal "dynamic segment" which, in response to ligand activation, could undergo the experimentally deduced aqueous/membrane domain transfer.

PubMed Disclaimer

Similar articles

Cited by

Publication types