Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Apr;96(4):2557-2569.
doi: 10.3168/jds.2012-5635. Epub 2013 Feb 10.

Milk metabolites and their genetic variability

Affiliations
Free article

Milk metabolites and their genetic variability

D Wittenburg et al. J Dairy Sci. 2013 Apr.
Free article

Abstract

The composition of milk is crucial to evaluate milk performance and quality measures. Milk components partly contribute to breeding scores, and they can be assessed to judge metabolic and energy status of the cow as well as to serve as predictive markers for diseases. In addition to the milk composition measures (e.g., fat, protein, lactose) traditionally recorded during milk performance test via infrared spectroscopy, novel techniques, such as gas chromatography-mass spectrometry, allow for a further analysis of milk into its metabolic components. Gas chromatography-mass spectrometry is suitable for measuring several hundred metabolites with high throughput, and thus it is applicable to study sources of genetic and nongenetic variation of milk metabolites in dairy cows. Heritability and mode of inheritance of metabolite measurements were studied in a linear mixed model approach including expected (pedigree) and realized (genomic) relationship between animals. The genetic variability of 190 milk metabolite intensities was analyzed from 1,295 cows held on 18 farms in Mecklenburg-Western Pomerania, Germany. Besides extensive pedigree information, genotypic data comprising 37,180 single nucleotide polymorphism markers were available. Goodness of fit and significance of genetic variance components based on likelihood ratio tests were investigated with a full model, including marker- and pedigree-based genetic effects. Broad-sense heritability varied from zero to 0.699, with a median of 0.125. Significant additive genetic variance was observed for highly heritable metabolites, but dominance variance was not significantly present. As some metabolites are particularly favorable for human nutrition, for instance, future research should address the identification of locus-specific genetic effects and investigate metabolites as the molecular basis of traditional milk performance test traits.

PubMed Disclaimer

Publication types

LinkOut - more resources