Distribution of monoamine oxidase proteins in human brain: implications for brain imaging studies
- PMID: 23403377
- PMCID: PMC3677103
- DOI: 10.1038/jcbfm.2013.19
Distribution of monoamine oxidase proteins in human brain: implications for brain imaging studies
Abstract
Positron emission tomography (PET) imaging of monoamine oxidases (MAO-A: [(11)C]harmine, [(11)C]clorgyline, and [(11)C]befloxatone; MAO-B: [(11)C]deprenyl-D2) has been actively pursued given clinical importance of MAOs in human neuropsychiatric disorders. However, it is unknown how well PET outcome measures for the different radiotracers are quantitatively related to actual MAO protein levels. We measured regional distribution (n=38) and developmental/aging changes (21 hours to 99 years) of both MAOs by quantitative immunoblotting in autopsied normal human brain. MAO-A was more abundant than MAO-B in infants, which was reversed as MAO-B levels increased faster before 1 year and, unlike MAO-A, kept increasing steadily to senescence. In adults, regional protein levels of both MAOs were positively and proportionally correlated with literature postmortem data of MAO activities and binding densities. With the exception of [(11)C]befloxatone (binding potential (BP), r=0.61, P=0.15), correlations between regional PET outcome measures of binding in the literature and MAO protein levels were good (P<0.01) for [(11)C]harmine (distribution volume, r=0.86), [(11)C]clorgyline (λk3, r=0.82), and [(11)C]deprenyl-D2 (λk3 or modified Patlak slope, r=0.78 to 0.87), supporting validity of the latter imaging measures. However, compared with in vitro data, the latter PET measures underestimated regional contrast by ∼2-fold. Further studies are needed to address cause of the in vivo vs. in vitro nonproportionality.
Figures
Comment in
-
[11C]befloxatone distribution is well correlated to monoamine oxidase A protein levels in the human brain.J Cereb Blood Flow Metab. 2014 Dec;34(12):1951-2. doi: 10.1038/jcbfm.2014.157. Epub 2014 Sep 17. J Cereb Blood Flow Metab. 2014. PMID: 25227605 Free PMC article.
References
-
- Ginovart N, Meyer JH, Boovariwala A, Hussey D, Rabiner EA, Houle S, et al. Positron emission tomography quantification of [11C]-harmine binding to monoamine oxidase-A in the human brain. J Cereb Blood Flow Metab. 2006;26:330–344. - PubMed
-
- Meyer JH, Ginovart N, Boovariwala A, Sagrati S, Hussey D, Garcia A, et al. Elevated monoamine oxidase a levels in the brain: an explanation for the monoamine imbalance of major depression. Arch Gen Psychiatry. 2006;63:1209–1216. - PubMed
-
- Meyer JH, Wilson AA, Sagrati S, Miler L, Rusjan P, Bloomfield PM, et al. Brain monoamine oxidase A binding in major depressive disorder: relationship to selective serotonin reuptake inhibitor treatment, recovery, and recurrence. Arch Gen Psychiatry. 2009;66:1304–1312. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
