Atomic-level alloying and de-alloying in doped gold nanoparticles
- PMID: 23404729
- DOI: 10.1002/chem.201203158
Atomic-level alloying and de-alloying in doped gold nanoparticles
Abstract
Atomically precise alloying and de-alloying processes for the formation of Ag-Au and Cu-Au nanoparticles of 25-metal-atom composition (referred to as Ag(x)Au(25-x)(SR)18 and Cu(x)Au(25-x)(SR)18 , in which R = CH2CH2Ph) are reported. The identities of the particles were determined by matrix-assisted laser desorption ionization mass spectroscopy (MALDI-MS). Their structures were probed by fragmentation analysis in MALDI-MS and comparison with the icosahedral structure of the homogold Au25(SR)18 nanoparticles (an icosahedral Au13 core protected by a shell of Au12(SR)18). The Cu and Ag atoms were found to preferentially occupy the 13-atom icosahedral sites, instead of the exterior shell. The number of Ag atoms in Ag(x)Au(25-x)(SR)18 (x = 0-8) was dependent on the molar ratio of Ag(I)/Au(III) precursors in the synthesis, whereas the number of Cu atoms in Cu(x)Au(25-x)(SR)18 (x = 0-4) was independent of the molar ratio of Cu(II)/Au(III) precursors applied. Interestingly, the Cu(x)Au(25-x)(SR)18 nanoparticles show a spontaneous de-alloying process over time, and the initially formed Cu(x)Au(25-x)(SR)18 nanoparticles were converted to pure Au25(SR)18. This de-alloying process was not observed in the case of alloyed Ag(x)Au(25-x)(SR)18 nanoparticles. This contrast can be attributed to the stability difference between Cu(x)Au(25-x)(SR)18 and Ag(x)Au(25-x)(SR)18 nanoparticles. These alloyed nanoparticles are promising candidates for applications such as catalysis.
Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials