Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1990 Feb;52(3-4):243-50.
doi: 10.1016/0009-3084(90)90120-g.

Biophysical inhibition of synthetic lung surfactants

Affiliations
Comparative Study

Biophysical inhibition of synthetic lung surfactants

B A Holm et al. Chem Phys Lipids. 1990 Feb.

Abstract

The biophysical activity and inhibition of a series of synthetic surfactant mixtures was studied and correlated with physiological effectiveness in restoring pressure-volume (P-V) mechanics of excised lungs. Results showed that several simple mixtures of dipalmitoyl phosphatidylcholine (DPPC) with fatty acids or diacylglycerols could be formulated to give good adsorption facility and dynamic surface tension lowering to less than 1 mN/m in pulsating bubble measurements at 37 degrees C. However, although biophysical activity approached that of natural lung surfactant (LS) and a related surfactant extract (CLSE) under normal conditions, surface properties were sharply inhibited by relatively small amounts of the plasma protein albumin (2 mg/ml) with minimum surface tensions greater than 30 nM/m even at high surfactant concentrations (5-20 mg lipids/ml). This sensitivity to biophysical inhibition was markedly increased compared to LS and CLSE, and had direct consequences for physiological efficacy: in spite of initially high activity, synthetic surfactants did not exert beneficial effects on P-V mechanics when instilled into surfactant-deficient excised rat lungs. Endogenous protein material was shown to be present upon surfactant recovery by lavage, and bubble measurements confirmed surface activity well below pre-instillation levels. Moreover, full biophysical activity was restored when lavage fluid was extracted to separate the synthetic surfactants from endogenous inhibitors. These results show that it is important to define relative sensitivity to biophysical inhibition in the development of effective lung surfactant substitutes. In addition, the existence of inhibition effects can generate an apparent lack of correspondence between initial biophysical activity and ultimate physiological actions of exogenous surfactant mixtures.

PubMed Disclaimer

Publication types

LinkOut - more resources