Antenatal betamethasone has a sex-dependent effect on the in vivo response to endothelin in adult sheep
- PMID: 23408033
- PMCID: PMC3627955
- DOI: 10.1152/ajpregu.00579.2012
Antenatal betamethasone has a sex-dependent effect on the in vivo response to endothelin in adult sheep
Abstract
Antenatal steroid administration is associated with multiple cardiometabolic alterations, including hypertension; however, the mechanisms underlying this phenomenon are unclear. The aim of the present study was to ascertain, in vivo, the contribution of the endothelin system to the development of hypertension in the adult offspring and the signaling pathway involved. Pregnant sheep were treated with two doses of betamethasone (n = 23) or vehicle (n = 22) at 80 days (~0.55) gestation and allowed to deliver at term. Adult sheep were chronically instrumented under general anesthesia to place vascular catheters and a femoral artery flow probe. Blood pressure and flow were recorded continuously, and femoral artery vascular resistance was calculated before and during administration of endothelin 1 (ET-1). Selective blockers (dantrolene, BQ123, niacinamide) or saline were administered simultaneously. Betamethasone-exposed animals exhibited a significant elevation in mean blood pressure (female: 98 ± 1.8 vs. 92 ± 2.1; males: 97 ± 3.4 vs. 90 ± 2.3; mmHg; P < 0.05). ET-1 elicited a significant increase in blood pressure (F = 56.4; P < 0.001) and in vascular resistance (F = 44.3; P < 0.001) in all groups. A betamethasone effect in the vascular resistance response to ET-1 (F = 25.7; P < 0.001) was present in females only, and the effect was partially blunted by niacinamide (F = 6.6; P < 0.01). Combined administration of niacinamide and BQ123, as well as of dantrolene abolished the betamethasone effect on vascular resistance. No significant differences in mRNA expression of ET(A) or ET(B) in endothelial or smooth muscle cells of resistance-size arteries were observed. We conclude that the betamethasone effect on vascular resistance is mediated by an enhanced response to ET-1 through ET(A) receptor via the cyclic ADPR/ryanodine pathway.
Figures








References
-
- Adair L, Dahly D. Developmental determinants of blood pressure in adults. Annu Rev Nutr 25: 407–434, 2005 - PubMed
-
- Barone F, Genazzani AA, Conti A, Churchill GC, Palombi F, Ziparo E, Sorrentino V, Galione A, Filippini A. A pivotal role for cADPR-mediated Ca2+ signaling: regulation of endothelin-induced contraction in peritubular smooth muscle cells. FASEB J 16: 697–705, 2002 - PubMed
-
- Bielefeldt K, Sharma RV, Whiteis C, Yedidag E, Abboud FM. Tacrolimus (FK506) modulates calcium release and contractility of intestinal smooth muscle. Cell Calcium 22: 507–514, 1997 - PubMed
-
- Cardillo C, Kilcoyne CM, Waclawiw M, Cannon RO, III, Panza JA. Role of endothelin in the increased vascular tone of patients with essential hypertension. Hypertension 33: 753–758, 1999 - PubMed
-
- Dalziel SR, Walker NK, Parag V, Mantell C, Rea HH, Rodgers A, Harding JE. Cardiovascular risk factors after antenatal exposure to betamethasone: 30-year follow-up of a randomised controlled trial. Lancet 365: 1856–1862, 2005 - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources