Determination of optimal vaccination strategies using an orbital stability threshold from periodically driven systems
- PMID: 23408124
- DOI: 10.1007/s00285-013-0648-8
Determination of optimal vaccination strategies using an orbital stability threshold from periodically driven systems
Abstract
We analyse a periodically driven SIR epidemic model for childhood related diseases, where the contact rate and vaccination rate parameters are considered periodic. The aim is to define optimal vaccination strategies for control of childhood related infections. Stability analysis of the uninfected solution is the tool for setting up the control function. The optimal solutions are sought within a set of susceptible population profiles. Our analysis reveals that periodic vaccination strategy hardly contributes to the stability of the uninfected solution if the human residence time (life span) is much larger than the contact rate period. However, if the human residence time and the contact rate periods match, we observe some positive effect of periodic vaccination. Such a vaccination strategy would be useful in the developing world, where human life spans are shorter, or basically in the case of vaccination of livestock or small animals whose life-spans are relatively shorter.
Similar articles
-
Stability analysis and optimal control of an SIR epidemic model with vaccination.Biosystems. 2011 May-Jun;104(2-3):127-35. doi: 10.1016/j.biosystems.2011.02.001. Epub 2011 Feb 21. Biosystems. 2011. PMID: 21315798
-
Optimal vaccination policies for stochastic epidemics among a population of households.Math Biosci. 2002 May-Jun;177-178:333-54. doi: 10.1016/s0025-5564(01)00095-5. Math Biosci. 2002. PMID: 11965262
-
Stability properties of pulse vaccination strategy in SEIR epidemic model.Math Biosci. 2002 Jul-Aug;179(1):57-72. doi: 10.1016/s0025-5564(02)00095-0. Math Biosci. 2002. PMID: 12047921
-
Mathematical models of vaccination.Br Med Bull. 2002;62:187-99. doi: 10.1093/bmb/62.1.187. Br Med Bull. 2002. PMID: 12176860 Review.
-
The estimation of the basic reproduction number for infectious diseases.Stat Methods Med Res. 1993;2(1):23-41. doi: 10.1177/096228029300200103. Stat Methods Med Res. 1993. PMID: 8261248 Review.
Cited by
-
Hitting the Optimal Vaccination Percentage and the Risks of Error: Why to Miss Right.PLoS One. 2016 Jun 22;11(6):e0156737. doi: 10.1371/journal.pone.0156737. eCollection 2016. PLoS One. 2016. PMID: 27332996 Free PMC article.
-
From regional pulse vaccination to global disease eradication: insights from a mathematical model of poliomyelitis.J Math Biol. 2015 Jul;71(1):215-53. doi: 10.1007/s00285-014-0810-y. Epub 2014 Jul 30. J Math Biol. 2015. PMID: 25074277
-
Optimal time-profiles of public health intervention to shape voluntary vaccination for childhood diseases.J Math Biol. 2019 Mar;78(4):1089-1113. doi: 10.1007/s00285-018-1303-1. Epub 2018 Nov 2. J Math Biol. 2019. PMID: 30390103
-
Optimal vaccination strategies and rational behaviour in seasonal epidemics.J Math Biol. 2016 Dec;73(6-7):1437-1465. doi: 10.1007/s00285-016-0997-1. Epub 2016 Apr 5. J Math Biol. 2016. PMID: 27048430
References
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical