Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Dec 16;11(3):e143-50.
doi: 10.5301/JABFM.2012.9773.

An opto-structural method to estimate the stress-strain field induced by cell contraction on substrates of controlled stiffness in vitro

Affiliations
Free article

An opto-structural method to estimate the stress-strain field induced by cell contraction on substrates of controlled stiffness in vitro

Manuela Teresa Raimondi et al. J Appl Biomater Funct Mater. .
Free article

Abstract

Purpose: Mechanical properties of the extra-cellular matrix (ECM) such as stiffness mediate cell signaling, proliferation, migration, and differentiation. Within this context, we developed a method to estimate in vitro the stress-strain field induced by contraction of cardiovascular progenitor cells on substrates of controlled stiffness.

Methods: Two alginate-agarose hydrogels were polymerized and mechanically characterized under compression. The hydrogels showed different levels of stiffness, mimicking either normal or pathologic ECM of the cardiac tissue, with an average compressive equilibrium modulus of 3 and 25 kPa, respectively. To estimate substrate deformation induced by the adhering cells, fluorescent microspheres were included under the surface layer of the hydrogels as displacement trackers. The hydrogels were polymerized in multiwell plates and seeded with cells that were allowed to adhere for 24 hours. On the softer substrate, images of the substrate surface and the cells were acquired using time-lapse fluorescence microscopy. Image processing enabled tracking the microsphere movements and mapping local substrate deformation because of tensile stresses produced by the cells. The resulting tensile stresses could then be calculated from measured stiffness.

Results and conclusions: The substrate strains ranged between a maximum contraction of -26.5% to a maximum stretching of 19.8%. The calculated stresses ranged between a maximum compression of -0.53 kPa to a maximum tension of 0.4 kPa (nN/µm²). These results may help to interpret experimental findings, showing important differences in cell morphology and expression of phenotypic markers, induced by culturing cells on substrates with different mechanical properties.

PubMed Disclaimer

Publication types

LinkOut - more resources