Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Mar 22:1282:172-7.
doi: 10.1016/j.chroma.2013.01.095. Epub 2013 Feb 1.

Evaluation and comparison of various separation techniques for the analysis of closely-related compounds of pharmaceutical interest

Affiliations

Evaluation and comparison of various separation techniques for the analysis of closely-related compounds of pharmaceutical interest

Charlotte Gourmel et al. J Chromatogr A. .

Abstract

The aim of the present work was to compare various separation techniques for the fast analysis of closely-related compounds, including structurally-related compounds, positional isomers, diastereoisomers, Z/E isomers. Three analytical techniques were evaluated, namely ultra high performance liquid chromatography (UHPLC), ultra high performance supercritical fluid chromatography (UHPSFC), both with sub-2μm particles, and capillary electrophoresis (CE) using non-aqueous solvents. To fairly compare the three analytical techniques, only two starting conditions for further method development were considered. All the selected mobile phases or background electrolyte were MS-compatible. As expected, CE often provided excellent results for the analysis of basic compounds but it was difficult to find out conditions that could be widely applied. On the other hand, UHPLC and UHPSFC were more generic and the performance was better than CE for the analysis of neutral and acidic compounds. In all cases, the analysis time was systematically lower than 3min. In conclusion, UHPLC was the most versatile strategy for the analysis of closely-related compounds and should be tested in a first instance. UHPSFC and CE approaches offered some drastic changes in selectivity and should be considered a second choice to reach alternative selectivity as they also allow high throughput separations.

PubMed Disclaimer

MeSH terms

Substances

LinkOut - more resources