Sub-10 nm gate length graphene transistors: operating at terahertz frequencies with current saturation
- PMID: 23419782
- PMCID: PMC3575621
- DOI: 10.1038/srep01314
Sub-10 nm gate length graphene transistors: operating at terahertz frequencies with current saturation
Abstract
Radio-frequency application of graphene transistors is attracting much recent attention due to the high carrier mobility of graphene. The measured intrinsic cut-off frequency (f(T)) of graphene transistor generally increases with the reduced gate length (L(gate)) till L(gate) = 40 nm, and the maximum measured f(T) has reached 300 GHz. Using ab initio quantum transport simulation, we reveal for the first time that f(T) of a graphene transistor still increases with the reduced L(gate) when L(gate) scales down to a few nm and reaches astonishing a few tens of THz. We observe a clear drain current saturation when a band gap is opened in graphene, with the maximum intrinsic voltage gain increased by a factor of 20. Our simulation strongly suggests it is possible to design a graphene transistor with an extraordinary high f(T) and drain current saturation by continuously shortening L(gate) and opening a band gap.
Figures










Similar articles
-
High-frequency graphene voltage amplifier.Nano Lett. 2011 Sep 14;11(9):3690-3. doi: 10.1021/nl2016637. Epub 2011 Aug 5. Nano Lett. 2011. PMID: 21805988
-
High-speed graphene transistors with a self-aligned nanowire gate.Nature. 2010 Sep 16;467(7313):305-8. doi: 10.1038/nature09405. Epub 2010 Sep 1. Nature. 2010. PMID: 20811365 Free PMC article.
-
Sub-100 nm channel length graphene transistors.Nano Lett. 2010 Oct 13;10(10):3952-6. doi: 10.1021/nl101724k. Nano Lett. 2010. PMID: 20815334 Free PMC article.
-
Growth of graphene with large single-crystal domains by Ni foam-assisted structure and its high-gain field-effect transistors.Nanoscale Adv. 2018 Dec 13;1(3):1130-1135. doi: 10.1039/c8na00203g. eCollection 2019 Mar 12. Nanoscale Adv. 2018. PMID: 36133206 Free PMC article.
-
Graphene-based plasmonic metamaterial for terahertz laser transistors.Nanophotonics. 2022 Feb 2;11(9):1677-1696. doi: 10.1515/nanoph-2021-0651. eCollection 2022 Apr. Nanophotonics. 2022. PMID: 39633933 Free PMC article. Review.
Cited by
-
Silicene nanomesh.Sci Rep. 2015 Mar 13;5:9075. doi: 10.1038/srep09075. Sci Rep. 2015. PMID: 25766672 Free PMC article.
-
How Important Is the Metal-Semiconductor Contact for Schottky Barrier Transistors: A Case Study on Few-Layer Black Phosphorus?ACS Omega. 2017 Aug 3;2(8):4173-4179. doi: 10.1021/acsomega.7b00634. eCollection 2017 Aug 31. ACS Omega. 2017. PMID: 31457714 Free PMC article.
-
Electronics based on two-dimensional materials.Nat Nanotechnol. 2014 Oct;9(10):768-79. doi: 10.1038/nnano.2014.207. Nat Nanotechnol. 2014. PMID: 25286272
-
Camphor-Based CVD Bilayer Graphene/Si Heterostructures for Self-Powered and Broadband Photodetection.Micromachines (Basel). 2020 Aug 27;11(9):812. doi: 10.3390/mi11090812. Micromachines (Basel). 2020. PMID: 32867054 Free PMC article.
-
Graphene mobility mapping.Sci Rep. 2015 Jul 24;5:12305. doi: 10.1038/srep12305. Sci Rep. 2015. PMID: 26204815 Free PMC article.
References
-
- Novoselov K. S. et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197–200 (2005). - PubMed
-
- Zhang Y. B., Tan Y. W., Stormer H. L. & Kim P. Experimental observation of the quantum Hall effect and Berry's phase in graphene. Nature 438, 201–204 (2005). - PubMed
-
- Berger C. et al. Electronic confinement and coherence in patterned epitaxial graphene. Science 312, 1191–1196 (2006). - PubMed
-
- Geim A. K. & Novoselov K. S. The rise of graphene. Nat. Mater. 6, 183–191 (2007). - PubMed
-
- Avouris P. Graphene: electronic and photonic properties and devices. Nano Lett. 10, 4285–4294 (2010). - PubMed
Publication types
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous