Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Apr 23;7(4):2935-47.
doi: 10.1021/nn305663e. Epub 2013 Mar 5.

A systematic analysis of peptide linker length and liposomal polyethylene glycol coating on cellular uptake of peptide-targeted liposomes

Affiliations

A systematic analysis of peptide linker length and liposomal polyethylene glycol coating on cellular uptake of peptide-targeted liposomes

Jared F Stefanick et al. ACS Nano. .

Abstract

PEGylated liposomes are attractive pharmaceutical nanocarriers; however, literature reports of ligand-targeted nanoparticles have not consistently shown successful results. Here, we employed a multifaceted synthetic strategy to prepare peptide-targeted liposomal nanoparticles with high purity, reproducibility, and precisely controlled stoichiometry of functionalities to evaluate the role of liposomal PEG coating, peptide EG-linker length, and peptide valency on cellular uptake in a systematic manner. We analyzed these parameters in two distinct disease models where the liposomes were functionalized with either HER2- or VLA-4-antagonistic peptides to target HER2-overexpressing breast cancer cells or VLA-4-overexpressing myeloma cells, respectively. When targeting peptides were tethered to nanoparticles with an EG45 (∼PEG2000) linker in a manner similar to a more traditional formulation, their cellular uptake was not enhanced compared to non-targeted versions regardless of the liposomal PEG coating used. Conversely, reduction of the liposomal PEG to PEG350 and the peptide linker to EG12 dramatically enhanced cellular uptake by ∼9 fold and ∼100 fold in the breast cancer and multiple myeloma cells, respectively. Uptake efficiency reached a maximum and a plateau with ∼2% peptide density in both disease models. Taken together, these results demonstrate the significance of using the right design elements such as the appropriate peptide EG-linker length in coordination with the appropriate liposomal PEG coating and optimal ligand density in efficient cellular uptake of liposomal nanoparticles.

PubMed Disclaimer

Comment in

LinkOut - more resources