Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Apr 25;88(4):102.
doi: 10.1095/biolreprod.112.104752. Print 2013 Apr.

Origin and evolution of yolk proteins: expansion and functional diversification of large lipid transfer protein superfamily

Affiliations

Origin and evolution of yolk proteins: expansion and functional diversification of large lipid transfer protein superfamily

Long Tao Wu et al. Biol Reprod. .

Abstract

Vitellogenin (VTG) and apolipoprotein (APO) play a central role in animal reproduction and lipid circulation, respectively. Although previous studies have examined the structural and functional relationships of these large lipid transfer proteins (LLTPs) from an evolutionary perspective, the mechanism in generating these different families have not been addressed in invertebrates. In this study, the most comprehensive phylogenetic and genomic analysis of the LLTP superfamily genes is carried out. We propose the expansion and diversification of LLTPs in invertebrates are mediated via retrotransposon-mediated duplications, followed by either subfunctionalization or neofunctionalization in different lineages. In agreement with a previous hypothesis, our analysis suggests that all LLTPs originate from a series of duplications of a primitive yolk protein gene similar to VTG. Two early consecutive duplications of the yolk protein genes resulted in the formation of microsomal triglyceride transfer protein (MTP) and the APO gene ancestor. Gains and losses of domains and genes occurred in each of these families in different animal lineages, with MTP becoming truncated. MTP maintained only the components stabilizing the huge lipoprotein particle. Surprisingly, for the first time, two VTG-like protein families were found to independently arise in the lineages of insects. This work consolidates the reconstruction of the evolutionary roadmap of the LLTP superfamily and provides the first mechanistic explanation on the expansion of family members via retrotransposition in invertebrates.

PubMed Disclaimer

Publication types

LinkOut - more resources