Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Apr 15;19(16):5120-6.
doi: 10.1002/chem.201203694. Epub 2013 Feb 20.

Visible-light photocatalytic radical alkenylation of α-carbonyl alkyl bromides and benzyl bromides

Affiliations

Visible-light photocatalytic radical alkenylation of α-carbonyl alkyl bromides and benzyl bromides

Qiang Liu et al. Chemistry. .

Abstract

Through the use of [Ru(bpy)3Cl2] (bpy=2,2'-bipyridine) and [Ir(ppy)3] (ppy=phenylpyridine) as photocatalysts, we have achieved the first example of visible-light photocatalytic radical alkenylation of various α-carbonyl alkyl bromides and benzyl bromides to furnish α-vinyl carbonyls and allylbenzene derivatives, prominent structural elements of many bioactive molecules. Specifically, this transformation is regiospecific and can tolerate primary, secondary, and even tertiary alkyl halides that bear β-hydrides, which can be challenging with traditional palladium-catalyzed approaches. The key initiation step of this transformation is visible-light-induced single-electron reduction of C-Br bonds to generate alkyl radical species promoted by photocatalysts. The following carbon-carbon bond-forming step involves a radical addition step rather than a metal-mediated process, thereby avoiding the undesired β-hydride elimination side reaction. Moreover, we propose that the Ru and Ir photocatalysts play a dual role in the catalytic system: they absorb energy from the visible light to facilitate the reaction process and act as a medium of electron transfer to activate the alkyl halides more effectively. Overall, this photoredox catalysis method opens new synthetic opportunities for the efficient alkenylation of alkyl halides that contain β-hydrides under mild conditions.

PubMed Disclaimer

LinkOut - more resources