Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1990 Apr;27(4 Pt 1):332-6.
doi: 10.1203/00006450-199004000-00003.

Reduction of perinatal hypoxic-ischemic brain damage with allopurinol

Affiliations

Reduction of perinatal hypoxic-ischemic brain damage with allopurinol

C Palmer et al. Pediatr Res. 1990 Apr.

Abstract

Cytotoxic free radicals are generated during cerebral hypoxia-ischemia and reperfusion. We studied the efficacy of allopurinol, a xanthine oxidase inhibitor and free radical scavenger, in reducing posthypoxic-ischemic damage in the developing brain of 7-d-old rat pups. Hypoxic-ischemic injury to the right cerebral hemisphere was produced by ligation of the right common carotid artery followed by 3 h of hypoxia with 8% oxygen. Thirty to 45 min before the hypoxia, the rats received either allopurinol (dose = 130-138 mg/kg) or an equal vol of saline (0.2 mL). Some pups were killed at 42 h of recovery for measurement of cerebral hemispheric water content, whereas others were killed at 30 or more d for neuropathologic examination. A total of 18 allopurinol treated rats had significantly less water content in the right hemisphere (89.07 +/- 0.32%) than 23 saline-treated animals (91.64 +/- 0.25%, mean +/- SEM, p less than 0.0001). Rank scoring of neuropathologic alterations revealed that the allopurinol treated rats were less damaged (p = 0.001). Only two of 13 brains from the allopurinol group suffered infarction compared to 10 of the 14 saline-treated animals. The results indicate that allopurinol reduces both cerebral edema and the extent of perinatal hypoxic-ischemic brain damage.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources